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CONTENTS 1 INTRODUCTION

Abstract

A class of dark matter models explored by the ATLAS experiment features a dark
sector containing dark quarks. Like Standard Model quarks, these dark quarks can shower
and hadronize into dark mesons, which may travel significant distances before decaying
into Standard Model particles. This produces topologically distinct emerging jets, which
are well-suited to identification by neural networks. To increase the sensitivity of future
analyses, improvements have been made to an existing supervised jet tagger. A new
unsupervised algorithm, aimed at enabling model-independent searches, has also been

developed.
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1 Introduction

Dark matter is currently one of the major unsolved problems in physics. Astronomical obser-
vations have provided convincing evidence for its existence [1], but its exact nature remains a
mystery. Various theoretical frameworks for dark matter have been proposed, including a class
of models known as hidden valley models [2]. Such models postulate the existence of a dark
sector containing dark particles that interact with the Standard Model (SM) through a new
mediator particle. Two potential mediator particles relevant to this report are a vector boson Z’
(corresponding to an s-channel process) and a scalar mediator ¢ (corresponding to a t-channel
process). When a proton-proton collision occurs, these mediator particles may be produced
by quark-antiquark annihilation, and subsequently decay into dark quarks. Feynman diagrams
for these processes are shown in Fig. 1. Similarly to SM quarks, dark quarks then undergo
showering and hadronization, forming dark mesons. In some models, dark mesons are unsta-
ble and have lifetimes that depend on the strength of their couplings to the SM. When these
couplings are relatively weak, dark mesons have longer lifetimes, and can travel macroscopic
distances before decaying back to SM particles. Dark particles are not detected, so only these
SM particles are observed. As seen in Fig. 2, this results in the production of topologically
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distinct emerging jets, characterized by SM particles appearing at displaced vertices within the
jet cone [3].
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Figure 1: Feynman diagrams for dark quark production. (a) depicts production through an
s-channel mediator Z’ and subsequent pair production of emerging jets (drawn as cones, with
dashed lines for dark mesons and solid lines for SM particles). The coupling constants g, and
Jqp govern the strengths of the interactions between Z’' and the SM quarks, and between Z’ and
the dark quarks, respectively. (b), (c¢), and (d) depict production through a ¢-channel mediator
®, with interactions governed by a coupling matrix . Images from Ref. [4].

The ATLAS collaboration has searched for evidence of emerging jets in a previous analy-
sis [1]. One strategy used to identify these jets was a specialized machine learning algorithm,
which can discriminate between the distinct structures of emerging and SM jets. This approach
allowed for a higher sensitivity than the complementary cut-based approach. This report de-
scribes improvements made to the existing supervised jet tagging algorithm, which will be used
in future analyses, as well as the development of a new unsupervised algorithm. A supervised
algorithm is trained on a mix of signal and background jets, and these must be labelled as
such; the analysis must therefore make assumptions about a signal model and its parameters.
In contrast, an unsupervised algorithm is trained on unlabelled data (in this case, background
jets only). This could allow for a model-independent search, in which the algorithm identifies
“anomalous” jets that differ in some way from the Standard Model background, but does not
make any assumptions about what the signal may be. In comparison to a search with the su-
pervised algorithm, this search would likely have reduced sensitivity to models the supervised
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Figure 2: Schematic of emerging jet production in a detector cross section. Dashed lines repre-
sent dark mesons, which are not detected. These eventually decay to SM particles, represented
by colored lines, which are observed at displaced vertices. Image from Ref. [3].

algorithm is trained on, but increased sensitivity to other models, making it a more general
search with potential sensitivity to a far larger parameter space.

2 Supervised Jet Tagger

2.1 Model Architecture

The supervised jet tagger is a transformer-based neural network derived from the ATLAS
flavour tagging algorithm [5]. The model architecture is depicted in Fig. 3. The input data,
listed in Table 1, consists of jet pseudorapidity and the features of up to 200 tracks associated
with the jet. In general, a neural network processes input data through several layers of
nodes. Each layer applies mathematical operations (mainly matrix operations with associated
parameters, known as weights and biases) to transform the input data. Training the neural
network involves optimizing the matrix parameters to minimize a loss function, which measures
how far the model’s predictions are from the true values. The optimization is performed using
an algorithm called gradient descent, which iteratively updates the parameters in the direction
that reduces the loss.

In the supervised jet tagger, the input vectors are first processed by a track initialization
network, which is a neural network made up of several layers that produces a higher-dimension
representation of each track (which is meant to better capture the important characteristics of
the track). The track representations are then encoded by a transformer, which outputs con-
ditional track representations. These are track representations that consider the relationships
and correlations between the different tracks in the jet. The conditional track representations
are then combined using attention pooling, which weighs and aggregates the tracks (placing
higher value on features it finds more relevant) to produce a single representation of the jet
as a whole. This global jet representation is used to perform three classification tasks. The
classification tasks are also neural networks which output classification scores corresponding to
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Figure 3: Schematic of the supervised tagger’s architecture. Image from Ref. [5] (this is the
ATLAS flavour tagging algorithm; “Jet flavour prediction” should be “Jet type prediction.”)

The primary task is jet type classification, or to predict whether a jet is a signal (emerg-
ing/displaced) jet or a background (prompt) jet. The other two tasks are auxiliary tasks whose
output is not directly used in the primary task, but which improve the model’s performance
at jet type classification. The first auxiliary task is track origin classification (predicting which
type of particle produced each track in the jet), and the second is vertex prediction (grouping
tracks within the jet). The loss function thus contains one term for each classification task:

Ltotal = Ljet + CVLtrack + ﬁLvertex (1)

The coefficients a and [ make each term in the loss roughly equal in magnitude to avoid
optimizing one task over the others. The terms Lije, Lirack and Lyertex are cross-entropy losses
for the jet classification, track origin prediction, and vertex prediction tasks respectively. Cross-
entropy loss, commonly used for classification tasks, quantifies how well the model’s predictions
(probabilities between 0 and 1 for each class) match the true values.

2.2 Parameter Updates

To try to improve the supervised model, modifications to several training parameters were
tested. These updates were chosen based on those made to the ATLAS flavour tagging algo-
rithm. A separate model was trained for each modification in order to observe their effects
independently. A first test was to increase the size of the track embedding (the dimensionality
of the track representations after tracks are processed by the initialization network) from 256
to 512. Another was to switch the activation functions from ReLU (Rectified Linear Unit) to
SiLU (Sigmoid Linear Unit). Activation functions are mathematical operations that are applied
between the layers of a neural network to transform the output of each node in the layer. They
introduce non-linearity to the network, allowing it to model more complex relationships and
patterns in the data. ReL.U takes the non-negative part of its input (i.e., ReLU(z) = max(0, z))
and is commonly used in neural networks, in part because it is computationally efficient. SiLLU,
defined as SiLU(z) = x - sigmoid(z), is a smoother alternative to ReLU.

Changes to the learning rate scheduler were also tested. The learning rate scheduler modifies
the model’s learning rate (how much the weights are adjusted after each training step) during

4
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Input Description
Jet n Jet pseudorapidity
do Track closest distance to PV in transverse plane
zpsin(f) | Track closest distance to PV in longitudinal plane
Ao Azimuthal angle of the track, relative to the jet ¢
An Track pseudorapidity, relative to jet n
q/p Track charge over momentum
(o) Uncertainty in track ¢
a(6) Uncertainty in track 6
a(q/p) Uncertainty in track ¢/p
do/o(dp) signed dj significance
20/0(20) signed zq significance
NPIX nits Number of Pixel hits per track
NSCOT hits Number of SCT hits per track
NIBL hits Number of innermost pixel layer hits
Np1X shared Number of Pixel shared hits
NSCOT shared Number of SCT shared hits

Table 1: List of variables used to train the supervised tagger. The only jet-level variable is
jet n (jet pr is not used as it was previously found to increase momentum dependence without
improving tagger performance); the rest are track-level features. PV is the primary vertex
of the track (from the main proton-proton interaction), and SCT refers to the semiconductor
tracker. Pseudorapidity (1) measures the angle of the particle with respect to the beam axis
(which is the z-axis of the coordinate system), and can be related to the polar angle 6 by
n = —Inftan(6/2)]. ¢ is the azimuthal angle around the beam axis. ¢ and p are the particle’s
charge and momentum respectively. dy is the track’s distance of closest approach to the PV in
the plane transverse to the beam axis, and zysin(f) is the distance of closest approach in the
longitudinal plane (2o is the value of z at the point that determines dy).

training. The baseline model used in the previous analysis had an initial learning rate of
1 x 1077, a maximum rate of 5 x 107, a final rate of 1 x 107°, and a pct_start (fraction of
training steps to reach the maximum value) of 0.01. In one test, the initial, maximum, and
final rates were decreased to 2 x 1078, 1 x 107*, and 2 x 107% respectively. In a separate test,
pct_start was increased to 0.1.

The final modification was to the loss calculation for the jet classification task. It was
previously computed using the CrossEntropyLoss function provided by PyTorch. This function
can compute cross entropy loss for an arbitrary number of classes, and it was set up with two
classes, outputting two classification scores: one representing the probability a jet was an
emerging jet, and the other that it was a prompt jet. However, jet type classification is in
fact a binary task, and can be performed using a single score ranging between 0 and 1 (with 1
corresponding to an emerging jet, and 0 to a prompt jet). The model was therefore modified to
output a single classification score, and to instead use Pytorch’s BCEWithLogitsLoss function.
This function computes a binary cross entropy loss (suited to binary classification tasks), and
“with logits” means that it also applies a sigmoid function which normalizes the model’s output
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to be between 0 and 1.
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Figure 4: ROC curves for models with different modifications to training parameters. The
“Nominal” curve is the model used in the previous analysis (without any changes). Signal
efficiency and background rejection for a cut at pgy > 0.98 are shown. There is no significant
difference in performance between models.

The algorithm’s performance with all these changes is plotted in Fig. 4, which is a ROC
(Receiver Operating Characteristic) plot of background rejection as a function of signal effi-
ciency. Each point on the curve corresponds to a different choice of jet classification score pgy,
which is used to select which jets are predicted to be signal (pg; above a certain value) and
which are background (pg; below that value). Ideally, both signal efficiency and background
rejection should be maximized, but there is in fact a trade-off between these two quantities: a
lower pg; will result in a higher signal efficiency but a lower background rejection, and vice-
versa. Cuts at a pgy of 0.98 (jets with pg; greater than 0.98 tagged as signal) are shown, as
this value was used in the previous analysis. As seen in Fig. 4, the curves are all essentially
the same; no significant increase (or decrease) in performance was observed. The time to train
the model also remained approximately the same, except for the case of the increased track
embedding, which was significantly slower (the time to train one epoch increased from 2 h 47
min to 4 h 40 min). Given that none of these updates improved the performance, the model
was reverted back to the baseline from the previous analysis, with one exception: the switch
to BCEWithLogitsLoss. This change was implemented as it is the loss function and number of
output scores that should generally be used for a binary classification task.

2.3 Extended Track Labelling Scheme

The next update to the model was to the auxiliary track origin classification task. The original
model classified tracks into four categories: pile-up, fake, prompt, and displaced. Pile-up tracks
come from other proton-proton collisions that occur at the same time (within the same bunch
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crossing) as the hard-scatter collision of interest; these are typically less interesting, lower-
energy interactions. As their name suggests, fake tracks are false tracks created by the track
reconstruction algorithms that do not originate from an actual particle. Prompt tracks come
from the collision of interest, but not the decay of a dark meson, whereas displaced tracks do
come from the decay of a dark meson (and are also produced by the collision of interest).

To try to improve the model’s performance at this task, the prompt track category was
split into six more specific particle types, for a total of nine categories. The new classifications
are primary, from B, from BC, from C, from tau, and other secondary, where B and C refer
to b-hadrons and c-hadrons respectively. The prompt track category previously included some
tracks that are in fact displaced from the primary interaction point (but originate from Standard
Model particles, not dark mesons), which were easy to misclassify as displaced. The goal of
this new track labelling scheme was to help the model correctly identify these tracks, and thus
better discriminate between prompt and displaced jets. Once the extended labelling scheme
was implemented, the model was tested with and without weights, which penalize the model
more strongly for incorrectly classifying tracks which are more rare. The goal of the weights
is to prevent the model from classifying all tracks as the most common origin, which might
otherwise minimize the loss function.
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Figure 5: Confusion matrices for the track origin classification task. (a) shows the performance
without weights, and (b) shows the performance with weights. In order from 0 to 8, indices
correspond to pile-up, fake, primary, from B, from BC, from C, from tau, other secondary, and
displaced.

The model’s performance at the track classification task can be assessed using a confusion
matrix, which compares the true origins of the tracks to the model’s predictions; a perfectly
efficient matrix would be diagonal. Confusion matrices with and without the weights are shown
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in Fig. 5. The addition of the weights significantly improves the model’s ability to correctly
predict track origins. With the weights, the model’s ability to identify pile-up, fake, primary,
other secondary, and displaced tracks is quite good (it is best at displaced tracks, with an
efficiency of 95.5%). There is some confusion between the different types of prompt tracks,
and it cannot identify tracks from tau particles at all, but the performance at track origin
classification is reasonably good overall. The effect of the extended labelling scheme on the
model’s performance at the primary jet classification task is discussed in Model Performance.

2.4 Updated Training Samples

The final update made to the supervised jet tagging algorithm was to the samples used to train
it, which are selected from simulated Monte Carlo samples. There are an equal number of signal
and background jets, and they are usually evenly split into two disjoint folds. In each fold, most
of the jets are used for training, with a small subset reserved for validation. A model trained
on jets from the first fold should be evaluated on jets from the second fold, and vice-versa.

The training dataset used in the previous analysis consisted of 12.1 million total jets, with
6.05 million in each fold. In each fold, 5.5 million jets were used for training, and 550 thousand
for validation. To try to improve the model, a new dataset was created with 20 million training
jets and 2 million validation jets in one fold, and 19.8 million training jets and 1.98 million
validation jets in the other fold. The new dataset includes several updates to the signal model,
with the goal of training the algorithm on a broader range of possible signal signatures in
order to be sensitive to a larger parameter space. The old dataset only contained dark meson
lifetimes of 5 and 50 mm, while the new dataset contains lifetimes of 1, 5, 10, 50, 100, 500,
and 1000 mm. The old dataset used signal masses of 600, 1500, and 3000 GeV, to which the
new dataset adds masses of 800, 1000, 1200, 1800, 2200, and 2500 GeV. Additionally, while
the old dataset only included samples generated using the s-channel model, the new dataset
includes the s-channel and t¢-channel models. Finally, a change was made to the transverse
momentum (pr) distribution of the background jets in order to try to reduce the dependence of
the algorithm’s efficiency on pr. There were previously fewer background jets than signal jets
at lower pr due to how the distributions were matched. In the new dataset, the background
jets are resampled to exactly match the signal py distribution.

2.5 Model Performance

The effect of the extended labelling scheme and of the updated dataset can be assessed using Fig.
6. The relevant curves to compare are the “Nominal” baseline curve from the previous analysis
(trained using the old samples and the old track labelling scheme) and the “Trained on old,
evaluated on old” curve, which is the same model, except with the new track labelling scheme.
There is a clear improvement in performance, indicating that the extended track labelling
scheme was a successful update to the model. The model’s performance was also evaluated
with and without the weights applied to the extended track labelling scheme. Relevant ROC
curves are plotted in Fig. 7. There is a very marginal increase in performance with the
addition of the weights, so the weights were kept primarily because they significantly improve
the confusion matrix (as shown in Fig. 5).
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Figure 6: ROC curves for models trained and evaluated on different combinations of old and
new samples. The “Nominal” curve (from the previous analysis) is trained and evaluated on
the old samples, with the old track origin labelling scheme (without weights). All other curves
have the extended labelling scheme, with weights.

Fig. 6 can also be used to assess the effect of the new training dataset on the model’s
performance. The only difference between the “Trained on old, evaluated on old” and “Trained
on new, evaluated on old” curves is which dataset is used to train the model. The performance
is the same, indicating that including new samples in the training dataset does not decrease
the model’s efficiency at tagging samples in the old dataset. However, comparing the “Trained
on old, evaluated on new” and “Trained on new, evaluated on new” curves shows a clear
improvement in the model’s performance, indicating that including new samples in the training
dataset does improve the model’s ability to tag the new signal samples. The updates to the
training dataset have thus enhanced the model’s ability to tag the newly included signal samples,
without losing any ability to tag the old ones, which is a clear improvement to the algorithm.
It should be noted that both of the “evaluated on new” curves are below the baseline curve of
the previous analysis, but this is because the new dataset includes jets that are much harder
to tag (such as those with longer lifetimes). Although the overall performance has decreased,
it is in fact a better jet tagging algorithm.

A model was also trained on the new data from both folds at once (for a combined dataset
of 39.8 million training jets) to test whether a larger number of training jets improved the
performance. The increase was marginal, as can be seen by comparing the “Trained on new,
evaluated on new” and “Combined data (new train/eval)” curves in Fig. 6. These are the same
model, but with the former trained on only the fold with 20 million jets, and the latter trained
on the entire combined data set.

To examine in more detail where the model’s performance has improved, its efficiency as
a function of signal lifetime is plotted in Fig. 8. Models trained on the new samples show a
significant improvement at higher lifetimes compared to those trained on the old samples. The
performance is similar at intermediate lifetimes, and slightly improved at very low lifetimes.
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Figure 7: ROC curves for models trained with and without weights (which penalize the model
more heavily for incorrectly classifying rarer tracks) used for track origin classification. All
curves except for “Nominal” (which is the baseline model used in the previous analysis) are
trained with the extended track labelling scheme.

This indicates that the inclusion of signal jets with much longer lifetimes in the training dataset
has had the desired effect of improving the algorithm’s efficiency at longer lifetimes, without
losing any performance at other lifetimes. The slight increase at very low lifetimes could be
from the inclusion of 1 mm lifetimes. Using weights for the track origin classification task does
seem to slightly decrease the new model’s efficiency at longer lifetimes, but the effect is much
smaller than the overall increase in performance from the new samples.

Finally, the model’s efficiency as a function of pr is plotted in Fig. 9. The main curves to
compare are the baseline curve from the previous analysis, and the “Evaluated on new, trained
on new” curve, which is the fully updated tagger. The new tagger’s efficiency is lower overall
for the same reason as for the ROC curve. The pr dependence of the old and new models seems
to be approximately the same, indicating that the update to the background jet pr distribution
has not had the desired effect of reducing pr dependence.

Overall, the updates to the supervised jet tagger have been successful. The extended track
labelling scheme and updated dataset have strictly improved the model’s performance, partic-
ularly at tagging jets with longer lifetimes, and the algorithm is essentially ready to be used in
a future analysis.
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Figure 8: Emerging jet tagging efficiency as a function of signal lifetime. Training the model
on new samples significantly improves performance at longer lifetimes, while keeping the same
performance at intermediate lifetimes.

3 Unsupervised Jet Tagger

3.1 Initial Model Architecture

The unsupervised jet tagger is a variational autoencoder (VAE). The general structure of a
VAE is that it first consists of an encoder, which is a neural network that compresses the
input data into a latent space. The latent space is a lower-dimension representation of the
data that is meant to capture its most important features and patterns. The encoder outputs
parameters describing a probability distribution in the latent space (in this case, the mean
and the logarithm of the variance of a normal distribution), and latent variables are randomly
sampled from this distribution. Another neural network, the decoder, uses the latent variables
to reconstruct an output as similar to the input as possible, while maintaining a regularized
latent space (in which points that are close together correspond to similar inputs). The VAE
is trained on background data only, and thus should only be able to effectively reconstruct
background jets. Loss scores should then be low for background jets and high for signal jets,
allowing for the identification of possible signal jets. Because the algorithm is not trained using
a particular signal model, the approach is said to be model-independent: the neural network
should tag anomalous jets (that differ from the Standard Model background), but unlike in the
supervised approach, these need not correspond to a specific signal model.

Currently, the unsupervised jet tagger is trained on track features only. The variables are
the same as those in Table 1, but without jet n and with seven more track-level variables: chi
squared, radius of first hit, #, number of degrees of freedom, track pr, zy relative to beamspot,
uncertainty in zp relative to beamspot, and uncertainty in zgsin(f). Jets are modelled as
sets of tracks of variable length, as there are up to 200 tracks for each jet. To encode these
variable-length sets, a Deep Set architecture [(] is used. Tracks are individually encoded by
several neural network layers (with ReLU activation), and attention pooling is then used to
combine the encoded tracks into a global jet representation of fixed dimension. Latent variables

11
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Figure 9: Emerging jet tagging efficiency as a function of pr. The pr dependence of the new
tagger (“Trained on new, evaluated on new”) seems similar to that of the old one (“Nominal”).

(the mean and the logarithm of the variance) are then sampled from the latent distribution.
At this point, the number of tracks in the reconstructed jet must also be generated. The
initial approach was to treat this similarly to a latent variable, and generate the mean and
the logarithm of the variance of the number of tracks (these were usually generated from the
encoded track representation rather than the global jet representation, but tests using the global
jet representation and the unencoded track data had the same performance). The mean number
of tracks was then scaled to be between 0 and 200 by taking the sigmoid (which normalizes
the mean to between 0 and 1) and multiplying by 200. Once the number of tracks in the
reconstructed jet is determined, the decoder generates each track in the jet, using the same
layers as the encoder but with the sequence reversed.
The loss function contains three terms:

Ltotal - Lrecon + LKL + Ltrack number (2)

The first term is meant to quantify the difference between the input and reconstructed jets.
It is currently the Chamfer Distance, chosen because it has already been used for VAEs that
operate on sets [7]. The Chamfer Distance measures the similarity between two sets of points
(in this case, two sets of tracks). For each point in the first set, the nearest point in the second
set is found, and the distance between them is computed. The same is done for the second set,
and the Chamfer Distance is then the sum of the squares of all these minimum distances. The
second term, Lkr,, is the Kullback—Leibler (KL) divergence. It quantifies the difference between
two probability distributions, and is used in VAEs to regularize the distributions of the latent
variables by encouraging them to resemble a standard normal distribution. The third term
in the 10ss, Lirack number, 18 meant to push the input and reconstructed jets to have the same
number of tracks. The initial approach was to also use the KL divergence for this term.

12
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3.2 Performance and Modifications

The first step in creating the unsupervised algorithm was to implement the Deep Set architec-
ture. To make sure it performed as expected, it was tested with a supervised jet classification
task as the output. This was successful, so the classification task was replaced with a latent
space and decoder to create a VAE. Several adjustments were then made to develop a func-
tional algorithm. For numerical stability, the logarithm of the variance of the latent variables
is clamped between —5 and 5. The Chamfer distance is significantly larger in magnitude than
the other two terms in the loss, so it is scaled by 1 x 107% or by taking the logarithm of the
Chamfer distance (both of these approaches have similar results). Linear scalings other than
1 x 107 were tested, but the performance was the same, albeit with different magnitudes of the
loss. After testing several possible configurations of layers in the Deep Set, an input dimension
of 24 (determined by the 24 track features), three hidden layers of dimensions 128, 64 and 32,
and then a latent dimension of 16 were chosen. The decoder reverses this order. More layers
or dimensions did not seem to improve the performance, whereas fewer did worsen it.

The Lk, and Liyack number t€rms seem to drop in magnitude much faster than the Liyia. To
try to mitigate this, KL annealing was tested: this consists of multiplying Lk, + Lirack number
by an annealing coefficient, which usually starts at 0 and later increases in value. Linear KL
annealing, in which the coefficient linearly increases from 0 to 1, was implemented. The drop
in KL divergences remained approximately the same, but the separation between background
and signal loss scores did improve. Of the tested combinations of epochs at which to start and
end the increase in the annealing coefficient, starting at the fifth epoch had the best results;
the end epoch did not seem to matter much. Cyclical annealing with a cosine function was also
tested, but performance was similar to linear annealing.

Another observed issue with the unsupervised tagger was the generation of the number
of tracks in the reconstructed jet. The distributions of the mean and the logarithm of the
variance of the track number were very tightly clustered around 0, resulting in almost all
reconstructed jets having 100 tracks. This did not match the true distribution, which has a
much broader spread. To try to correct this, a new version of the algorithm was tested, in
which a supervised task was implemented only for the track number: the validity of each track
is individually predicted by generating a score between 0 and 1 (tracks with scores above 0.5
are valid, otherwise they are invalid). Liack number 18 TOW a binary cross entropy loss, similar
to the losses for the classification tasks in the supervised jet tagger. With this approach, the
reconstructed track number distribution is much closer to the true distribution, as shown in
Fig. 10, and the separation between signal and background loss scores also improves. Two main
variants of this model have been tested: one which generates the track validity scores from the
encoded track representation, and one which uses the global jet representation. The former has
a track number distribution which more closely resembles the true track number distribution,
whereas the latter has a better separation between signal and background loss scores.

Overall, development of the unsupervised jet tagger is in progress, and the tests and changes
that have been made are very much experimental. Its current state is shown in Fig. 11: there
is a slight separation between the loss scores of background and signal jets, but there remains
a lot of work to be done to refine and optimize the algorithm. Nevertheless, the current model
is a good starting point for future work, and the unsupervised tagger is a promising approach
to a more general search for dark matter within the framework of dark sector models.
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Figure 10: (a) shows the true track number distribution, (b) shows the reconstructed track
number distribution of the fully unsupervised model (note the y-axis log scale), and (c) shows
the reconstructed track number distribution of the model with a supervised task for track
number generation. The small signal spike at low track numbers in (c) is likely because the
model is only trained on background, and so doesn’t learn that jets can have very few tracks.

4 Conclusions and Future Work

Efforts to search for evidence of dark matter in the form of emerging jets in the ATLAS detector
are ongoing, and neural networks offer a powerful method to identify possible signal jets. A
supervised jet tagging algorithm, which was used in a previous analysis, has been successfully
improved. An extended track labelling scheme and new training dataset have enhanced the
model’s performance, with the most significant increases in efficiency at longer dark meson
lifetimes. The model trained with the new samples is shown to perform better at tagging
them without losing any performance at tagging the old samples, making it a strictly better
algorithm. There is still room for improvement, for instance in reducing the signal efficiency’s
dependence on pr, but the current changes should already significantly improve sensitivity in
future analyses.

In parallel, an unsupervised jet tagger has been developed, although many refinements and
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Figure 11: (a) shows a histogram of the loss scores of background and signal jets, with a small
amount of separation between the two. This iteration of the model was trained using the
logarithm of the Chamfer loss, and with the supervised task for reconstructed track number
generation. (b) shows the loss scores of signal and background plotted against pr; there cur-
rently does not appear to be any obvious correlation between loss and py (which is the desired
outcome).

extensions to this algorithm must still be made to improve its performance. For instance,
it could be possible to use the Earth Mover’s Distance instead of the Chamfer Distance to
quantify the similarity between input and reconstructed jets [7], or to test other ways to generate
the number of tracks in the reconstructed jets. Further work may also involve training the
model with reconstructed vertex information, which may help it identify displaced vertices and
correlate them with anomalous jets. Additionally, much more thorough testing of this model
still needs to be performed in order to gain a better understanding of its performance and
any biases it might have. However, the current model already demonstrates some ability to
discriminate between signal and background jets, and shows that it could be possible to conduct
a model-independent search in the future.
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