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Introduction

The ATLAS calorimeter is a non-compensating calorimeter that was optimised for measuring electrons and
photons. This means that for strongly interacting particles (hadrons), their energy is only partially measured.
For example, typically only 70% of a charged pion’s energy is measured in the calorimeter. The rest of the
energy is invisible, and is released in nuclear reactions, in low energy neutrons, and as heat.

Proton-proton collisions induce hard scattering interactions, producing quarks and gluons. These particles
leave jets, which can then be measured by the detector. The energy of jets is also only partially measured.

The ATLAS detector has a two-level trigger system. It consists of a Level 1 (L1) electronics-based trigger
system, and the high-level trigger (HLT) system, which is a software-based system. L1 and HLT jets refer to
jets that are based off of their respective trigger systems.

The ATLAS hadron calibration procedure uses Monte Carlo simulations to correct for this inefficieny in
measuring the energy on average. In addition to simulating the L1 and HLT systems, the Monte Carlo simu-
lations also contain a truth jets; these correspond to the true energy and momentum of the particles. In order
to improve the energy resolution, variables indicating the type of dominant interactions for a given jet can be
used. One of these variables is the electromagnetic fraction defined as the energy deposited in the calorimeter
divided by the total energy of the particle.

If we only consider pions (the lightest hadrons), a jet contains typically 30% of neutral, negatively or
positively charged pions. Unlike the charged pions, the neutral pions decay dominantly into two photons and
therefore their energy is fully measured in the calorimeter. Consequently, jets with a high neutral pion content
have a high response and a large energy deposit in the electromagnetic calorimeter which contains the photons
from the pion decay. The jet response r is defined as the ratio between the pT of two types of jets. For example,
the HLT-truth response is the ratio of HLT jet pT to the truth jet pT . The jet resolution can be improved by
studying r as a function of the EM fraction.

The goal of this project is to investigate if these kinds of calibrations can be also used in the ATLAS trigger
system. During the project, the main datasets used were Run 2 data and Monte Carlo simulation data. A Run
3 dataset was also considered, but was abandoned due to a lack of available statistics. All data analysis was
done using RDataFrame.
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Methodology

The various datasets used contain L1 trigger, high-level trigger (HLT), truth, and/or reconstructed jets. These
jets are classified by their transverse momentum1 pT , their angle ϕ, pseudorapidity η, and (usually) their energy
E. Each of these quantities are stored in separate branches, but are linked such that the jth entries in the
branches correspond to the same particle(s). The branches are also ordered in descending pT , so the leading
and subleading jets are accessible.

In principle, the leading jets should match up, but this is not necessarily the case in practice. For example,
the L1 jets have worse resolution than the HLT jets, and so the leading L1 jet may instead correspond to the
subleading HLT jet. In order to account for this, one can instead look into the η and ϕ branches to match the
jets via their direction.

∆R =
√
(∆ϕ)2 + (∆η)2 (1)

The quantity ∆R, defined by equation (1) above, is a measure of directional agreement between the two jets;
∆ϕ and ∆η are the differences in the ϕ and η values between the two branches. When the matching code is
implemented, we set ∆Rcut equal to some threshold value and so two jets are considered to be matched if ∆R
is below this threshold. For this project, the threshold was set at 0.3.

The code used for this direction matching works with four-momentum variables, not with the pT , η, ϕ, and
E branches. Thus, a constructor must be used to map (pT , η, ϕ, E) to a (E, p) four-vector. This, however, has
another complication in that certain jets (primarily the L1 jets) do not have an E branch. The energy can be
calculated to be E = pT cosh(η) if the mass of the particle is negligible compared to its momentum (for details,
see the Appendix ).

Di-Jet Asymmetry

The first phase to evaluate the energy resolution was to look at the di-jet asymmetry A, defined as

A =
pT,1 − pT,2

pT, avg
, (2)

where pT,1 and pT,2 denote the leading and subleading jet pT respectively, and pT, avg is their average.

Asymmetry histograms were made for both the HLT and L1 jets with various cuts on the HLT pT range.
The L1 jets typically displayed a large asymmetry and have worse resolution than the HLT jets. When the jet
data was displayed, there were many instances of the leading L1 jet being in saturation (pT,1 ∼ 1000 counts)
and the subleading L1 jet being lower than expected. This would result in a larger asymmetry, and filtering
out the leading L1 jets with pT > 1000 does resolve this issue. Figure 1 shows histograms for the HLT and L1
symmetries with and without this pT filter on L1.

1The L1 jets have transverse energy ET instead, but ET ≈ pT ; see the Appendix for further details.
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Figure 1: A di-jet asymmetry histogram with all jets (top), and with the saturated lead L1 jets filtered out.
Both histograms have a cut with pT, avg between 600 and 700 GeV.

This saturation issue was unexpected, especially since it emerged at relatively low HLT pT (500 − 600 GeV).
In order to test for a directional dependence in the saturation, 2D histograms of the ϕ and η branches were
made. If, in the histograms where only saturated values were present, a strong peak was observed, this could
indicate that L1 saturation is due to particles passing through that area of the detector. These histograms were
made using the lead L1 jets and all matched L1 jets (the direction matching is done between the L1 and HLT
jets). When looking at all jets, both histograms are quite uniform. As shown in Figure 2, there is no directional
influence on the saturation. The cause of this saturation is still unknown.
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Figure 2: Lead L1 ϕ vs. η histogram corresponding to lead pT in saturation.

The lead L1-HLT response r was also plotted against the lead HLT pT , as shown in Figure 3. Note that r
is around 0.5, indicating that indeed the L1 jet pT counts are measured in counts, where one count is 0.5 GeV.
The top line that is shown is due to the L1 jet being in saturation. As before, this saturation appears even at
relatively low HLT pT values.
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Figure 3: The L1-HLT response vs. the lead HLT pT .

EM Fraction Plots

The main phase of the project was focused on the EM fraction. As a preliminary study, the reconstructed-truth
response was plotted against the truth pT (the reconstructed and truth jets are matched beforehand). Figure
4 shows a histogram and its x -profile. Note that the profile is approximately 1 at higher pT ; there is a low pT
bias due to asking for a 20 GeV cut. Hence, cutting at pT, Truth = 30 should work as expected.
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Figure 4: A histogram of r vs. pT, Truth (top), and its profile (bottom).

The final set of histograms plotted the HLT-truth response against the EM fraction as well as the L1-truth
response against the EM fraction. The Monte Carlo simulation data contains the EM fraction corresponding to
the HLT jets, but not one for the L1 jets. The hope is that the HLT EM fraction is an accurate approximation
for the L1 EM fraction.

In order to make these plots, the jets were matched, and the EM fraction should be matched as well. Since
the EM fraction is based on the HLT jets, the matched HLT jet pT values can be compared to all HLT pT values,
and can collect the indices in latter branch corresponding to an equality between values in the two branches.
Then, the matched EM fraction would be the EM fraction values corresponding to these indices. Unfortunately,
due to time constraints, this was not successfully implemented.
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Appendix

The transverse energy ET of a particle is defined in terms of its mass m and transverse momentum pT as

ET =
√
m2 + p2T . (3)

If m ≪ pT , then ET ≈ pT .

In order to show that E ≈ pT cosh(η), first recall the invariant mass of a particle:

m2 = E2 − p2. (4)

If the mass is negligible, then (4) becomes

E = |p| (5)

The momentum components in Cartesian coordinates can be expressed in terms of pT , η, and ϕ via

px = pT cos(ϕ),

py = pT sin(ϕ),

pz = pT sinh(η).

Using these expressions in (5):

E =
√

p2T cos
2(ϕ) + p2T sin

2(ϕ) + p2T sinh
2(η)

= pT
√

1 + sinh2(η)

⇒ E = pT cosh(η).
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