
Summer 2023 Student Report1

Developing Firmware and Algorithms for the Liquid2

Argon Signal Processor3

(Peter) Xiangyuan Ma4

University of Toronto,5

Toronto Ontario Canada6

McGill University,7

Montreal, Quebec Canada8

E-mail: peterxy.ma@gmail.com9

Abstract: In this report we discuss the development of various firmware and algorithms for the10

digital electronics of the Liquid Argon Signal Processor (LASP), which is designed to measure and11

reconstruct the energy deposited into the Liquid Argon Calorimeter cells. We first examine the12

development of firmware for PATGEN, TTCGEN, 10Gbe Base R/KR network protocols. Then we13

explore the development of novel machine learning algorithms for optimal energy reconstruction14

given the digital current signals. Lastly, we investigate various hardware tests to examine the15

functionality of the future electronic boards.16

mailto:peterxy.ma@gmail.com


Contents17

1 Introduction 218

1.1 Liquid Argon Calorimeter and Electronics 219

1.2 High Luminosity Large Hadron Collider (HL-LHC) 320

1.3 Overview 421

2 Background 522

2.1 FPGA’s and Firmware 523

2.2 Energy Reconstruction and the Optimal Filter 524

2.3 Hardware Boards and Testing 625

3 Firmware 626

3.1 Introduction Firmware Programming and LASP Framework 627

3.2 PATGEN 728

3.2.1 Requirements 829

3.2.2 Simulation 930

3.2.3 Compilation 1031

3.2.4 Next Steps 1032

3.3 TTCGEN 1033

3.3.1 Requirements 1234

3.3.2 Simulation 1335

3.3.3 Compilation 1436

3.4 10GBE Base R/KR 1437

3.4.1 Simulation 1538

3.4.2 Next Steps 1539

4 Energy Reconstruction Algorithms 1740

4.1 Optimal Filter 1741

4.2 Motivation 1842

4.3 Optimal Filter Neural Network Correction 1843

4.4 Results 1944

5 Functional Tests 2145

5.1 National Instrument Data Acquisition 2146

5.2 Voltage Measurements 2147

5.2.1 Hardware Setup 2148

5.2.2 Software Setup 2249

5.3 Current Measurements 2350

5.3.1 Hardware Setup 2351

5.3.2 Software Setup 2452

– 1 –



6 Next Steps 2553

1 Introduction54

The ATLAS (A Toroidal LHC ApparatuS) detector is one of the four main particle detectors at the55

Large Hadron Collider (LHC), which is the world’s largest and most powerful particle accelerator56

located at CERN (the European Organization for Nuclear Research) near Geneva, Switzerland.57

The main purpose of the ATLAS detector is to observe and study the particles produced by58

high-energy proton-proton collisions in the LHC. This detector works by detecting various kinds59

of particles in 4 main sections.60

Firstly, the innermost part of the ATLAS detector is the tracking system, which consists of61

semiconductor-based detectors like silicon strips and pixels. When charged particles pass through62

these sensors, they ionize the material, creating electron-hole pairs that generate electrical signals.63

These signals allow the tracking system to reconstruct the paths of charged particles, determining64

their momentum and charge.65

Next we have the Electromagnetic Calorimeter (ECal) which is designed to measure the energy66

of electrons and photons. When these particles pass through the ECal, they interact with its dense67

material, producing electromagnetic showers. The energy of the original particle can be measured68

by the the ionization signal inside the calorimeter.69

Then surround that we have the Hadronic Calorimeter (HCal) which is used to measure the70

energy of hadrons, such as protons, neutrons, and mesons. Hadrons interact strongly with matter71

and create hadronic showers when they pass through the HCal. The energy of the original particle72

is measured by the total amount of hadronic activity in this calorimeter.73

Lastly, we have the Muon Spectrometer. Muons are particles that can penetrate through several74

layers of the detector due to their weak interactions with matter. The outermost part of the ATLAS75

detector is the muon spectrometer, which consists of large magnet systems and dedicated tracking76

chambers. It is used to precisely measure the trajectories and momenta of muons, which are essential77

for various physics analyses, including the discovery of the Higgs boson.78

Together with these sub-detectors, the ATLAS detector provides a comprehensive view of the79

particles produced in LHC collisions, allowing physicists to explore and understand the fundamental80

constituents of matter and the forces that govern them.81

1.1 Liquid Argon Calorimeter and Electronics82

The Liquid Argon Calorimeter is specifically responsible for detecting and measuring the electro-83

magnetic showers produced by electrons and photons as they interact with the detector’s material.84

These showers are cascades of secondary particles generated when high-energy electrons or photons85

lose energy.86

The active medium, liquid argon, is an ionizable material. When charged particles, such as87

electrons or positrons, enter the liquid argon they ionize the atoms along their path, producing88

charged particles (electrons and ions) within the LAr.89

– 2 –



The ionization produced in the liquid argon generates electrical current and thus a measurable90

signal. These signals are collected by the readout electrodes in the gaps between the lead absorber91

plates. The readout electrodes are made of copper and are surrounded in the liquid argon. By92

measuring the ionization signals, the ECal can determine the energy deposited by the electrons and93

photons in the calorimeter.94

The Liquid Argon Calorimeter employs a sampling technique, where the dense absorber95

material (lead) causes electromagnetic showers to develop, while the liquid argon serves as the96

active medium to detect and measure the energy of the showering particles. This method allows for97

accurate energy measurements while also containing the size of the calorimeter.98

However, the electrical signals measured on the readout electrodes are weak and need to99

be amplified and shaped before further processing. Front-end electronics, located close to the100

calorimeter, perform this initial amplification and shaping of the signals.101

After being amplified and shaped, the analog current signals are digitized. Analog-to-digital102

converters (ADCs) convert the continuous analog signals into digital values, which can be easily103

processed and recorded by digital systems. This entire process is handled by the Front End Boards104

(FEB). In the future the FEB will be upgraded to the FEB2.105

Then, we transmit the data to the digital signal processor where the final step in the liquid argon106

signal processing is the reconstruction of the energy deposited by the particles in the calorimeter.107

To achieve such goal, we need to develop custom electronics to meet the demands for the future108

upgraded High Luminosity Large Hadron Collider, to handle the increased data rate. This new109

electronics, involve software, firmware and hardware developments on Field programmable Gate110

Arrays. We will spend the majority of our development and discussion on building and improving111

this component of the calorimeter called the Liquid Argon Siganl Processor (LASP).112

1.2 High Luminosity Large Hadron Collider (HL-LHC)113

The HL-LHC upgrade is aimed at significantly increasing the collision rate and the overall luminosity114

of the LHC by a factor of 5-10, which refers to the number of particle collisions occurring per unit115

of time and per unit of area. This increase in luminosity is crucial for enhancing the chances of116

discovering new particles or phenomena and for conducting more precise measurements of known117

particles. However this upgrade comes with many new challenges, of which pileup and new trigger118

systems are critically important motivators to upgrade the current LAr Calorimeters.119

Pileup: Pileup refers to the phenomenon that occurs when multiple proton-proton collisions120

take place simultaneously in a single bunch crossing in a particle accelerator like the LHC. In121

other words, when two high-energy proton beams collide head-on, each bunch of protons contains122

a certain number of protons, and each proton can interact with another proton from the opposing123

beam. However, due to the high luminosity of the LHC, there’s a possibility that multiple protons124

from one bunch can interact with protons from another bunch at the same time. This results in125

several independent interactions occurring in one bunch crossing.126

Pileup becomes more significant as the luminosity of the accelerator increases, this in part is127

due to the higher number of interactions per bunch crossing on the order of 200 as opposed to 40 in128

the current LHC. High pileup levels can pose challenges to particle detectors and analysis because129

it becomes harder to distinguish the particles coming from different interactions. This can impact130

the accuracy of measurements and make it more difficult to identify rare or interesting events.131

– 3 –



In terms of the new Trigger Systems, particle accelerators like the LHC generate a tremendous132

amount of data from each collision, and not all of this data can be processed and stored due to133

limitations in computing resources. To address this, trigger systems are employed. Trigger systems134

are specialized hardware and software designed to quickly decide which collision events are worth135

recording for further analysis.136

The HL-LHC upgrade involves the development of new trigger systems to handle the increased137

number of interactions per bunch crossing. This means that it is more difficult to identify quickly138

the particles we want to have as a final state and hence the events to select. This is in turn a result of139

increased pileup. The new trigger systems aim to be more sophisticated and selective in choosing140

which events to record. Here are some aspects of the new trigger systems.141

Together with other upgrade challenges we see that critical electronics such as those for the LAr142

need to be upgraded as well to match the new demands of the HL - LHC both with the new trigger143

scheme and for the high pileup as well upgrading the hardware to hold the more computationally144

intensive firmware. This new upgrade for the LAr is called the Liquid Argon Phase-II upgrade.145

Even more specifically we look to upgrade the Liquid Argon Signal Processor (LASP) to address146

these new challenges.147

1.3 Overview148

For the LASP upgrade there are few major components that need to be upgraded and developed.149

This falls under 3 big categories, firmware, energy reconstruction algorithms and functional tests.150

In the remaining sections we discuss 5 major projects working towards advancing each of these151

categories in various smaller projects.152

1. Firmware: is the development of custom circuits on digital electronics to process incom-153

ing data. The LASP is primarily programmed by writing firmware on these FPGA (field154

programmable gate arrays). Below are few firmware projects that we have developed this155

summer.156

(a) patgen: stands for Pattern Generator and is a piece of firmware designed to generate157

FEB2 equivalent data internally without having to connect to a FEB2 board.158

(b) ttcgen stands for the TTC (Trigger Timming Control) generator which generates inter-159

nally TTC equivalent data without having to be connected to the outside world.160

(c) 10 GB Base-KR is a new implementation of the 10GB network stack that uses the161

BASE-KR PHY layer instead of the original BASE-R PHY layer [1].162

2. Energy Reconstruction Algorithms are algorithms on the LASP used to convert digital163

current measurements to estimations on energy. In this project we investigate the use of164

machine learning algorithms to help with energy reconstruction in high pileup environments.165

3. Functional Tests: we also prototype circuits and software for reading current and voltage166

measurements on the LASP boards. These are designed to test the functionality of the167

manufactured hardware.168

Together all these projects help contribute to the development of LASP board for the planned Phase169

II upgrades.170

– 4 –



2 Background171

2.1 FPGA’s and Firmware172

An FPGA, stands for Field-Programmable Gate Array, is a type of integrated circuit that is pro-173

grammable and reconfigurable after manufacturing. Unlike traditional application-specific inte-174

grated circuits (ASICs) that are designed for specific tasks, FPGAs can be customized and adapted175

for various applications through hardware programming called firmware programming.176

FPGA’s offer attractive advantages for our LASP use case in that 1) Flexibility: They can be177

easily reprogrammed to implement different logic functions or algorithms, making them adaptable178

for various applications. 2) High performance: In certain scenarios, FPGAs can provide faster179

processing compared to software running on a general-purpose CPU. 3) Real-time processing:180

FPGAs are well-suited for real-time applications due to their ability to process data in parallel.181

The principle of firmware programming is that it is a description of circuits rather than code182

like in a procedural program. By default signals are sent in parallel, but in order to implement183

procedural logic, clocked processes are vital. For every component we time the manipulation of184

signals to the cycles of a clock. This way one can reasonably program and synchronize the various185

parallel processes in their firmware. This clocked process can also be called a flipflop. With this186

principle in mind, one can leverage the power of these fabless boards for realtime processing!187

The general cycle of development with firmware follows as such: 1) firstly we implement the188

algorithm in VHDL (Very High-Speed Integrated Circuit Hardware Description Language) code189

2) we simulate the code in a testbench simulation to verify it works as intended 3) we write the190

component onto a development kit FPGA and finally we write to the LASP testboard and use signal191

tap to verify its functionality.192

This summer we build upon the existing LASP firmware upgrade to implement more transparent193

testing components for future development.194

2.2 Energy Reconstruction and the Optimal Filter195

In addition of the firmware side of the LASP, the actual algorithm in reconstructing the digital signal196

is vital as well. The signal processor needs to take in ADC data and convert it into an estimation in197

the energies of an event. Currently, to do so we use the Optimal Filter (OF).198

The OF is a linear filter. The filter works by taking a set of constant coefficients to which we199

then multiply and sum with the incoming ADC data. These static coefficients are found through200

minimizing a least squares fit between the model and the simulated data. This technique is currently201

favoured due to its interpretability, accuracy and efficient implementation on a FPGA.202

Although this has proven to be successful, there are new challenges that are not present for the203

current ATLAS detector, namely pileup.204

Pileup occurs when the collision rate is high, which is expected in the HL-LHC. In these205

scenarios, particles produced from single collision can still be present or interacting within the206

detector when subsequent collisions occur. These collisions occur at every 25. For the LAr, this is207

due to the delay caused by the time it takes for electrons to drift across the liquid argon gap creating208

a pileup of signal since. In other words the signal does not disappear fast enough before the next209

collision occurs, hence creating an increased amount of pileup.210

– 5 –



This poses a problem for the OF since this super position of signal creates noise making211

inaccurate reconstruction of energy. Furthermore, even if we refit the optimal filter to the high212

pileup data expected for the HL-LHC the simple linear filter still is insufficient in recreating the213

original energy signal accurately due to the noisy low energy pileup.214

Previously, attempts have been made to improve the linear filter through the use of various neural215

networks, and other non-linear filter techniques. This summer we investigated new approaches to216

this problem using machine learning beyond that of convolution neural networks and recurrent217

neural networks.218

2.3 Hardware Boards and Testing219

Lastly, regardless of the firmware and software engineering involved we also need to develop220

robust hardware to run the LASP on. We anticipate the hardware to eventually be manufactured by221

third-party vendors like Intel and physical links developed by members of the ATLAS collaboration.222

However, to determine the functionality of these hardware boards we need to develop physical223

probes to test the hardware. One of the proposed ideas is to develop user friendly software to224

interface with measurement tools such that engineers on the ground can quickly determine the225

functionality of a given manufactured board. This allows for faster turnarounds.226

3 Firmware227

3.1 Introduction Firmware Programming and LASP Framework228

Programming an FPGA involves designing and configuring the hardware logic within the FPGA229

to perform a specific task or function. These devices are versatile in that they allow one to define230

one’s own digital logic circuits, making them suitable for a wide range of applications. The process231

involves several steps, from designing the logic using a hardware description language (HDL) to232

actually programming the FPGA device. We quickly walk through how this is typically done for233

the LASP project.234

For the LASP project, the firmware is based in VHDL and tested, developed and deployed235

to Intel based silicone. Because of these restrictions we make use of Intel’s Quartus Prime 22.4,236

Intel’s IP Cores and their suite of simulation and programming tools to implement our design and237

our workflow.238

Using these Intel provided software tools, the LASP project builds a framework to help239

accelerate the design and testing of these projects by connecting all various dependencies and sub240

repositories through various symbolic links. This means that when using the LASP repository,241

everything from simulations to compilations to even opening up quartus is done through make242

commands which automatically pulls in dependencies from the larger LASP project.243

On a macro-scale, the LASP project consists of many components responsible for various tasks244

in the digital signal processing pipeline. Each coloured box 1 represents a component of the LASP.245

These components live as sub-repositories within the LASP repository project.246

As evident by the number of coloured boxes, this firmware is quite complex. When developing247

firmware we start with VHDL code of a component in isolation and slowly integrate complexity248

into a particular component of the project. We then simulate the newly created components and249

– 6 –



Figure 1. Diagram of all LASP Components

verify it’s behaviour is correct. Beyond verifying by eye, we can verify using automated checks250

called UVVM (Universal VHDL Verification Methodology). UVVM checks are checked by the251

continuous integration (CI) in the LASP repository such that any merged code will need to pass252

these checks to be accepted into a master branch. Lastly, one would implement a compilation target253

that uses the component that we have created. This compilation target should also include signal254

tap which allows one to verify the internal signals of a particular component after writing it to an255

FPGA. This way it allows us to investigate the internal signals of the FPGA in realtime. The devices256

that we run on are the Intel H-Tile Stratix 10 development Kits with some of our work also257

having a LASP testboard (closer to real electronics deployed in the future) compilation target.258

With this design, simulate, compile, test framework in mind, we move on to developing 3259

components of the LASP, namely patgen in section 3.2, ttcgen in section 3.3 and 10GBe Base-260

KR network stack in section 3.4.261

3.2 PATGEN262

Pattern Generator (patgen) is a component designed to provide a FEB2-equivalent data generator263

[2]. This is an important component dedicated to testing and ensuring all subsequent components264

of the LASP is functioning properly with testable mock data.265

To understand what kind of data patgen needs to mimic, we need to understand where the data266

comes from. The FEB2 stands for the Front End Board 2 where 2 is the indication for phase 2267

upgrades [3]. The FEB2 houses the electronics that are mounted close to the detector.268

These boards in particular receive the signals from the calorimeter cells to perform a fast analog269

processing, including amplification, shaping and a split into a high gain and a low gain [2]. Both270

gain are digitized by an ADC.271

After the FEB2, the data is now a digital signal ready to be sent off detector optically. This is272

done through the lpGBT [4]. The LPGBT (Low Power GigaBit Transceiver) is a high-speed data273

– 7 –



Figure 2. Example of link types 0,1, 2.

transmission and reception device made to provide reliable and high-speed data communication274

in harsh radiation environments. This connection has 14 channels of inputs unlike the 8 output275

channels of the FEB2.276

However there is a complication, the mappings between the ADC chips with data coming out277

of the FEB2 versus that number of lpGBT boards is a mapping of 3 to 2. To support this there are278

3 specific link types (named 0, 1, 2 [2]) to complete such an awkward map.279

In link type 0, 1, it includes 1.5 of a complete FEB2 ADC data output with 2 BCID (bunch280

crossing id) signals for each FEB2 output. In link type 2 it contains just 1 ADC data output. Note281

that each FEB2 outputs 8 channels of ADC data, so a full FEB2 has 8 ADC channels while half282

has 4. More specifically we expect signals to look like the following incoming from the FEB2, see283

diagram 2.284

Our goal is to mimic this design and make it modular to allow future development of more285

complex data payloads.286

3.2.1 Requirements287

The more explicit requirements of patgen are outlined in the firmware specifications document [2],288

but are repeated here for readers to easily follow.289

1. The data provided by patgen must have the same structure as the data from the FEB2s290

2. Patgen must be able to mimic the non-synchronization between the links (BCID shift).291

3. Each of the 66 links shall have an independent source of data.292

4. A controllable multiplexer shall select between the two possible data sources (patgen or lolli’s293

FEB2 interface) for ialign for each link individually.294

5. Patgen as a data source shall be start- and stoppable,295

6. While running it shall provide data in an uninterrupted, continuous and circular manner296

7. The data repetition shall be compatible with an orbit (3564 BCs). (If resources require, a297

repetition twice or any integer fractions of an orbit are tolerable298

– 8 –



Figure 3. Example of an ADC channel implemented as a simple counter.

Figure 4. Example correctly formatted BCID info. Notice that the first bit is always 1, while the second bit
is always 0 and the third bit is the BCR (bunch crossing reset) and the next five bits are the BCID followed
by 8 bits of padded zeros.

3.2.2 Simulation299

Firstly, to simulate PATGEN, we need to firstly generate a valid ADC data. For our simulation setup300

we will generate mock ADC data from a simple counter. We chose to use a simple counter as the301

mock ADC data because it makes it simple to debug future firmware components [2]. Below is a302

demonstration of utilizing a counter in figure 3.303

Secondly we need to format the BCID information to the correct standards. We need the first304

bit to be 1 the second bit to be 0, the third bit to represent the BCR (bunch crossing reset) and the305

next 5 bits to represent the truncated BCID and the remain 8 bits to be padded with 0 [2]. Below is306

a demonstration of that in figure 4307

Thirdly, we need to make sure all the link types are of the correct format. There are three link308

types, each representing the combination of full and half ADC data. Recall that an ADC data has309

8 channels, and a half ADC has 4. We piece together a set of 12 channels based on this data to310

form the three link types. Below is a demonstration of one of those link type implementations in311

figure 5. Fourth, we have delay chains. One of the primary use cases for the PATGEN component312

is to use it to test the ialign module. The ialign module is used to align the inputs coming in from313

the FEB2 [2]. In this case we want to introduce artificial delays such that we can test the ialign314

module for such situation. Below we demonstrate the use of delay chains and subsequently the use315

– 9 –



Figure 5. Example of linktype 0 which conforms to diagram 2. This appears to be flipped but keep in mind
the simulation counts in reverse order.

of ialign with these delay chains. Fifth point is, we want to make sure that the ADC data orbits316

every fixed number of counts following the BCR [2]. This is because it makes debugging easier317

when observing the ADC data we can see it follows the same loop back. Last point, we have also318

implemented UVVM continuous integration checks for the PATGEN component. We check mainly319

for the regular counting of ADC and BCID data. We also count to keep track that the BCID loops320

back in the expected stated number of cycles.321

3.2.3 Compilation322

Finally having checked out the implementation in simulation we finally compile this to a particular323

target. This means writing to a particular FPGA and use a program called signal tap to check that324

the FPGA’s internal signals are behaving in the correct fashion. Below in figure 8 we check signal325

tap on a compiled firmware and write it to the LASP testboard and observe the that the signals326

match that of the signals coming from the simulation. This verification is an indication that the327

written VHDL code is most likely correct.328

3.2.4 Next Steps329

The next step is to integrate patgen with other components in slice test beyond just the ialign330

component.331

3.3 TTCGEN332

The TTCGEN stands for TTC generator [2] . The TTC stands for Trigger Timing Control [3]. The333

TTC system provides the timing and trigger signals necessary to coordinate data acquisition and334

– 10 –



Figure 6. Example delay chains, with some signals coming earlier than others

Figure 7. Example of an ADC channel having the correct fixed orbit highlighted by the last bit around the
blue box.

– 11 –



Figure 8. Example of patgen running on a LASP Testboard.

trigger events in the ATLAS detector [3]. It ensures that data collection is synchronized across the335

various subsystems.336

More specifically it will deliver the Level-0 trigger accept signal (L0a), which is based on337

coarse information about particle energy and position, to the LAr calorimeters [2] .338

Along side the L0a, The LASP receives a payload of data all through a component called the339

TTCRX from the outside world about particular triggered events. Similar to PATGEN, to test the340

LASP in the future would require us to have connections to the TTC incoming data, however relying341

on being connected to the outside world to debug internal components is not optimal. Instead want342

to be able to generate this signal internally. To do so we created the TTCGEN component to satisfy343

this need.344

3.3.1 Requirements345

The more explicit requirements of ttcgen are outlined here.346

1. Must provide a valid L0a, L0ID, LBID, ttype and BCID signals. Please see TTCRX firmware347

specification manual [2] for details on these signals.348

(a) L0a must take the form of a BCID signal349

(b) L0ID must be a 38 bit counter keeping track of every L0a that occurs350

(c) LBID is the luminosity block id which is a counting the first bunch crossings.351

(d) ttype is the trigger types that can be outputed by the trigger system.352

2. A trigger must be set at random times to mimic real trigger system353

3. The trigger must be a light weight implementation.354

However, since the current use of slice test does not make use of the ttype and the LBID signals we355

will set those to be zero for the time being. Furthermore, to simplify the development, we created a356

minimal viable piece of firmware and so the trigger does not occur randomly instead it occurs every357

set number of frequencies. In otherwords we address points number 1, 3 first.358

– 12 –



Figure 9. Example of TTCGEN bcid signal.

Figure 10. Example of TTCGEN L0a signal.

3.3.2 Simulation359

For the simulation we want to first check that the BCID is of the correct format and is of the correct360

size and data shape. We expect the BCID to be a 12 bit counter increasing upwards with additional361

bits of for the valid, start of packet, end of packet and slot. Here we see figure 9 demonstrating that362

the BCID is in fact 12 bits long and that the data format contains the valid, eop (end of packet), sop363

(start of packet) signals matching the correct data format.364

Secondly we want to check the TTCGEN is outputting the correct BCID’s to trigger on. We365

expect the signals to be the same as the BCID signals except it contains regular splits of data where366

the trigger is not on. Here in figure 10 for demonstration purposes we trigger on every 10 cycles. We367

see that there are sections of the BCID where we loose data as expected since we are not triggering368

on all the data.369

Lastly we want to check that L0ID is counting up for each of these triggers that occur. This is370

of 38 bit length data. We expect to see a simple counter. We demonstrate below that this is indeed371

the case 11.372

– 13 –



Figure 11. Example of TTCGEN L0ID signal. It is in fact counting upwards insych with the L0a signal.

3.3.3 Compilation373

As described previously we also compiled to the devkits and the LASP testboard and have success-374

fully completed both.375

3.4 10GBE Base R/KR376

Currently the connection between the 10 gigabit link between the Smart Rear Transition Module377

(SRTM) component. The SRTM unlike the current LASP uses a 10 gigabit BASE-KR network378

protocol in its network stack.379

A network stack, also known as a networking protocol stack, is a layered set of software380

protocols and components that enable communication between devices over a network [1]. It’s381

responsible for managing the flow of data between computers, servers, or any network-connected382

devices. The network stack follows a structured architecture, usually based on the OSI (Open383

Systems Interconnection) model or the TCP/IP model.384

1. Physical Layer: This layer deals with the actual physical transmission of raw data bits over385

the communication medium, such as cables, wireless signals, and connectors. It defines386

characteristics like voltage levels, cable specifications, and physical topology.387

– 14 –



2. Data Link Layer: Responsible for reliable point-to-point communication between directly388

connected nodes. It handles error detection, flow control, and framing (dividing data into389

frames). Ethernet and Wi-Fi protocols operate at this layer.390

3. Network Layer: Focuses on routing packets of data from source to destination across391

multiple networks. It involves addressing, routing, and logical network topology. IP (Internet392

Protocol) operates here.393

4. Transport Layer: Manages end-to-end communication and ensures reliable data delivery. It394

divides data into smaller segments, performs error checking, and handles flow control. TCP395

(Transmission Control Protocol) and UDP (User Datagram Protocol) operate here.396

5. Session Layer: Establishes, maintains, and terminates communication sessions between397

applications on different devices. It manages dialog control and synchronization between398

processes.399

6. Presentation Layer: Handles data translation, compression, and encryption, ensuring that400

data sent by one application is understood by another. It also provides data formatting and401

code conversion.402

7. Application Layer: The topmost layer interacts directly with user applications. It provides403

network services and application protocols for tasks such as file transfer (FTP), email (SMTP),404

web browsing (HTTP), and more.405

To demonstrate the network stack here is a diagram depicting such a network stack in figure406

12.407

3.4.1 Simulation408

For the simulation we took the existing network stack that has the BASE-R implementation of the409

network stack and attempt to use the base-KR implementation of the PHY layer. However we will410

only use one network stack and implement a loop back. Meaning the data sent to the transceiver411

TX will then be connected to the receiver thus looping back the data. The result appears as follows.412

We see all the signals are high for the RX/TX serial data and their respective ’ready’ signals.413

We also see that the various locks are all high except for the block lock signal. We note that the414

result is mostly promising except for the single lock signal.415

3.4.2 Next Steps416

After contacting Intel engineers for assistance1, one of the suggestions was to instantiate two network417

stacks instead of just one network stack. There is an apparent issue with the. However if one use418

KR in loopback one have to set the nonce bit for the AN/LT to come up properly.419

1We reached out to peter.schepers@intel.com

– 15 –



Figure 12. We see that the physical layer of the stack uses the base KR implementation that includes the
MAC layers and the BASEKR layer.

Figure 13. Example of BASE KR implementation of the network stack.

– 16 –



Figure 14. Example of the pulse shape that we wish to fit to [6].

4 Energy Reconstruction Algorithms420

4.1 Optimal Filter421

Calorimeters are detectors that measure the energy of particles by absorbing them and converting422

their energy into detectable signals. The optimal filter is responsible for accurately determining the423

energy of these particles based on the measured signals [5]. So here is a quick run down as to how424

the optimal filter works in energy reconstruction for calorimeters.425

Firstly, calorimeters respond to incoming particles by generating electrical signals. The shape426

of the generated signal, known as the signal response function, depends on the type of particle and427

its energy. The optimal filter aims to find the best way to match the measured signals with the428

expected signal response [5].429

Then we can look at deconvolution. We take the known shape of the energy deposition and fit430

the coefficents to match training data generated by a simulation. We use these optimal coefficents431

(𝑎linear)for computing the actual shape of the pulse.432

Lastly we get a weighted sum. The optimal filter performs a weighted sum of the measured433

signal values, where the weights are determined by the deconvolution process. The goal is to empha-434

size the parts of the measured signal that best match the expected signal response. Mathematically435

it looks like the following:436

𝑂𝑡 =

(
𝑛∑︁
𝑗

𝑎linear𝑉𝑡− 𝑗

)
(4.1)

As mentioned before, the choice of filter weights is determined mathematically to maximize437

the signal-to-noise ratio. This means that the optimal filter amplifies the parts of the signal that438

carry the most information about the particle’s energy while suppressing noise and other unwanted439

effects. This gives it the characteristic shape.440

– 17 –



The optimal filter technique is used to improve the accuracy of energy reconstruction in441

calorimeters by taking into account the characteristics of the detector’s response and minimizing the442

impact of noise. This is crucial for particle physics experiments where precise energy measurements443

are necessary to study the properties of particles and phenomena. The technique requires a deep444

understanding of signal processing, detector physics, and mathematical optimization methods.445

4.2 Motivation446

The Optimal Filter is still robust in certain regimes of input data. Let us make use of the already447

simple model and add on to it small corrections. We fill in these small corrections by O which we448

model as a recurrent neural network.449

However, since we know that we don’t care about the energy reconstruction everywhere but450

rather we care about the energy reconstruction at peaks where there’s high energy, we can selectively451

restrict the problem to just these special regimes. These regimes are controlled by the Γ ”gate”452

value by multiplying this correction term by 0 or 1. This gives us the structure we see in the equation453

above.454

4.3 Optimal Filter Neural Network Correction455

Let us fill in the missing blanks. We will work with a window size of 𝑚 with 𝑛 optimal filter456

coefficients.457

1. We let O take in 𝑚 > 𝑛 samples of ‘ADC‘ data458

2. We compute Optimial Filter from the most recent values, this case we have 𝑛 coefficents so459

we take the 𝑛 most recent ‘ADC‘ data points and feed into the ‘OF‘ model. Note: We keep460

track of the most recent 𝑚 ‘OF‘ outputs in memory.461

3. We take the most recent 𝑛 ‘OF‘ outputs and feed them into the gate model462

Let us formalize this more.463

1. Compute ‘OF‘

𝑂𝑡 =

(
𝑛∑︁
𝑗

𝑎linear𝑉𝑡− 𝑗

)
2. Compute Gate, here we are using 𝑂 as the saved 𝑚 samples of 𝑂𝑡 (optimial filter output)

Γ𝑡 = Γ(𝑂), Γ : R𝑚 → R

3. Lastly we compute the Correction terms where 𝑉𝑡 ∈ R𝑚 is all the 𝑚 samples of the ‘ADC‘

O 𝑗 = O(𝑉𝑡 ) 𝑗 , O : R𝑚 → R𝑛

Okay enough talk, implement this. Let us first check how the optimal filter preforms on high464

pileup data. See figure 15.465

– 18 –



Figure 15. Example of optimal filter on high pileup data

Here we construct a neural network model that uses the optimal filter alongside a neural466

network correction term. However to train the neural network we compute minimize the variance467

of the error. This is because in general we do not care about a constant bias, we care only about468

minimizing the spread or the variation in the error. Thus we directly minimize such loss function.469

Consider 𝑦 as the label, and we say 𝑝 as the model including the optimal filter, and 𝑉 as the input470

sample. And consider there to be 𝑛 training samples then we have471

L(𝑉, 𝑦) =

∑𝑛
𝑖

(
(𝑝(𝑉𝑖) − 𝑦𝑖) − 1

𝑛

∑𝑛
𝑗 𝑝(𝑉 𝑗) − 𝑦 𝑗)

)2

𝑛−1
(4.2)

We minimize this using ADAM optimizer [7] and built the model using Keras [8]. The neural472

network model is a simple recurrent neural network with of 915 parameters. With 3 layers of 10473

hidden units.474

A more descriptive diagram can be found here in figure 16.475

4.4 Results476

The initial results appear to have better performance than the classical Optimal Filter by an order477

of 40% improvement in reconstruction error. There is a reduce in the standard deviation in the478

errors between true energy and predicted energy. This is reflected in the plot of distribution of479

error 17. This approach is notably better than classical pure ML techniques (see figure 18), because480

of its computational efficiency and improved accuracy. Since there is a gate, the feed forward481

correction term (the computationally expensive term) is only calculated intermittently where as for482

other approaches using Convolutional Neural Networks these expensive forward propagation terms483

are computed multiple times. The code can be found here repository.484

– 19 –

https://github.com/PetchMa/CERN_2023/blob/main/ML_OF_correction.ipynb


Figure 16. Example of neural network architecture. We see that the optimal filter takes in data as per
usual, the output then gets fed into a gate which triggers the neural network correction term depending on
its energy output. The results are then added together. Note that the neural network needs more data to
be kept in memory on the order of 20 time samples, similar to a traditional convolutional neural network
implementation.

Figure 17. Histogram of computing true energy deposition minus predicted energy and we see that the
spread or the standard deviation of the novel approach drastically improved the energy reconstruction error.
The 𝜎 is the standard deviation of each error.

– 20 –



Figure 18. Visual check of the fit of our correction model. We see a noticeably better fit of the energy
estimation than that of the traditional optimal filter.

5 Functional Tests485

In this section we discuss the functional tests for the LASP board. One of the most important486

parts in the development is fabricating the physical board after designing all the firmware and the487

software to interface with the hardware components. However when building these boards from488

third-party suppliers it is up to us to help them determine the quality of their manufactured product489

and if these performances matches our expectations.490

One of these performance tests is to test if the board is functional if at all immediately after491

they have been manufactured. This includes two key measurements, one of voltage and the second492

of the current. In this part of the project we discuss developing software interfaces and prototype493

circuits to conduct these tests.494

5.1 National Instrument Data Acquisition495

To measure the voltage or current using custom software defined tools we need to interface with496

the a data acquisition device. One such suitable device is the National Instrument (NI) cDAQ and497

its various modules used to control and acquire data.498

For this project we use the special nidaqmx python libaray to develop python scripts to measure499

and control and interface with the cDAQ, NI 9203 module for current measurements and the NI500

9205 module for voltage measurements and NI 9481 for relay control.501

5.2 Voltage Measurements502

5.2.1 Hardware Setup503

We first describe the steps for setting up the circuits and hardware tools required for preforming a504

simple voltage measurement on a known power supply unit (PSU).505

1. Turn on the DAQ by plugging it in with the USB connector and its power cable.506

– 21 –



Figure 19. A graphical description of the hardware setup for our voltage measurement tests.

2. Take a power supply and route the positive leads to the ai0 channels. The negative leads come507

from the ai8 channels. (General Note: the negative leads come from the opposite end of the508

connectors)509

3. We also want to ground the device so that our ground matches that of the power supply.510

Route a connection between the COM with the ground of the power supply. This makes the511

readings more accurate.512

The circuit setup should look like the following description.513

5.2.2 Software Setup514

In the remaining parts of the project we developed the software components to interface with the515

NI cDAQ modules. Below is an example of our custom library interface.516

1 from cDAQ import cDAQ_measurements517

2518

3 voltage_params = {"channel": ["cDAQ1mod1/ai0"], ’seconds’: 20, ’sample_rate’:519

1000}520

4 test = cDAQ_measurements(voltage_param=voltage_params)521

5 test.measure()522

6 test.save_csv_voltage("voltage_measure")523

7 test.plot_voltage("voltage_measure")524

Listing 1. Example interface for reading voltage measurements on the cDAQ NI 9205 module

This interface is supported by the package provided by the national instrument. To make all525

this work, please follow the here.526

– 22 –

https://gitlab.cern.ch/atlas-lar-be-firmware/LASP/LASP-testbench/-/tree/5-cdaq-readout-code-template/mockup/functionnal_tb/cDAQ


Figure 20. An example of voltage measurement conducted on a known power supply. Here we varied the
voltage manually and see the recorded measurement reflect that manual variation.

Range Accuracy at Full Scale Random noise 𝜎 Sensitivity
±10𝑉 6,230 𝜇𝑉 237 𝜇𝑉 96.0𝜇𝑉
±5𝑉 3,230 𝜇𝑉 121 𝜇𝑉 46.4𝜇𝑉
±1𝑉 692 𝜇𝑉 29 𝜇𝑉 10.4𝜇𝑉
±0.2𝑉 175 𝜇𝑉 15𝜇𝑉 4𝜇𝑉

Table 1. The accuracy of the voltage measurements using the NI 9205 module.

The resulting voltage measurements can be ploted as presented below in 21.527

However it is important to also note about the accuracy of the voltage measurement for each528

gain in voltage that we choose to measure.529

5.3 Current Measurements530

5.3.1 Hardware Setup531

Similar to previous section we describe the steps for setting up the circuits and hardware tools532

required for preforming a continuous live current measurement on a known power supply unit533

(PSU).534

1. Turn on the DAQ by plugging it in with the USB connector and its power cable.535

2. Take a power supply and route the positive leads to a potentiometer. We use the potentiometer536

to vary the current since the PSU cannot change the current.537

3. We then connect potentiometer to the NI 9203 module in series putting the lead into ai0 and538

connecting ground to COM.539

– 23 –



Figure 21. An example of voltage measurement conducted on a known power supply.

5.3.2 Software Setup540

In the remaining parts of the project we developed the software components to interface that uses a541

live interface to display current measurements in a graphical interface. To do so run the following542

script. Please see here for a live demo of the GUI.543

1 from cDAQ import cDAQ_measurements544

2545

3 current_params = {"channel": ["cDAQ1mod1/ai0"], ’seconds’: 20, ’sample_rate’:546

1000}547

4 test = cDAQ_measurements(current_param=current_params)548

5 seconds = 60549

6 test.multichan_current_live(seconds, ds = 0.2)550

Listing 2. Example interface for live reading current measurements on the cDAQ NI 9203 module for 20
seconds with a sample refresh rate of 0.2 seconds

One of the technical challenges when building such a GUI, is an issue with buffering data and551

multi-threaded data acquisition. Since a single thread is allowed to read the data, we must then store552

the data in some buffer or memory. One way is to have 2 concurrent threads, one thread to read in553

data and buffering it and one to generate the GUI. We choose to do this because the NI cDAQ does554

not allow concurrent reading on a single cDAQ we have issues in recording data, hence we have a555

small gap in the time it takes to buffer the data meaning we loose data taking time momentarily. To556

mitigate its effects we create a third concurrent process that listens to a global variable. This third557

thread buffers the data into memory whenever this global variable is updated. This leaves the first558

thread free to read data again without having to manage memory. This trick although unsafe with559

higher refresh rates on the order of 10ms offers a decent compromise in providing a usable GUI560

that’s accurate at higher sampling rates.561

– 24 –

https://drive.google.com/file/d/1RpjOKbnJgwuEfCo5Z6EyIFZSJyzkLFWy/view


6 Next Steps562

We hope that the continued development of the firmware, hardware testing and algorithms devel-563

opment help move forward the develop of electronics for digital readouts on the LAr. Next steps564

would be to further integrate these changes into the LASP framework allowing for faster testing and565

debugging of future projects to come.566

Acknowledgments567

Special thanks to my supervisors and colleuges, Brigitte, Xingguo, Raphael, Sam, Nick, Maheyer568

and Kathrin for their help and guidance throughout the summer! I acknowledge that this work569

was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Un-570

dergraduate Student Research Award and the travel costs was supported by the Institute of Particle571

Physics (Canada) (IPP). Thanks to the organizers of the CERN Summer Student Program and the572

IPP Summer Student Fellowship Program for this excellent opportunity. [2]573

References574

[1] Intel, Intel® Stratix® 10 10GBASE-KR PHY IP Core User Guide, .575

[2] T.L.C. Group, ATLAS LAr Calorimeter Phase-II Upgrade, .576

[3] ATLAS collaboration, ATLAS Liquid Argon Calorimeter Phase-II Upgrade : Technical Design Report,577

.578

[4] N. Guettouche, S. Baron, S. Biereigel, D.H. Montesinos, S. Kulis, P.V. Leitao et al., The lpGBT579

production testing system, Journal of Instrumentation 17 (2022) C03040.580

[5] C. Rey, Optimal filtering of calorimeter signals, Thermochimica Acta 184 (1991) 329.581

[6] E. Fullana et al., Optimal Filtering in the ATLAS Hadronic Tile Calorimeter, .582

[7] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.583

10.48550/ARXIV.1412.6980.584

[8] F. Chollet et al., “Keras.” https://keras.io, 2015.585

– 25 –

https://doi.org/10.1088/1748-0221/17/03/c03040
https://doi.org/10.1016/0040-6031(91)80035-h
https://keras.io

	Introduction
	Liquid Argon Calorimeter and Electronics
	High Luminosity Large Hadron Collider (HL-LHC)
	Overview

	Background
	FPGA's and Firmware
	Energy Reconstruction and the Optimal Filter
	Hardware Boards and Testing

	Firmware
	Introduction Firmware Programming and LASP Framework
	PATGEN
	Requirements
	Simulation
	Compilation
	Next Steps

	TTCGEN
	Requirements
	Simulation
	Compilation

	10GBE Base R/KR
	Simulation
	Next Steps


	Energy Reconstruction Algorithms
	Optimal Filter
	Motivation
	Optimal Filter Neural Network Correction
	Results

	Functional Tests
	National Instrument Data Acquisition
	Voltage Measurements
	Hardware Setup
	Software Setup

	Current Measurements
	Hardware Setup
	Software Setup


	Next Steps

