
Python Scripts for moving information from Celestica
spreadsheets to the ATLAS ITk Production Database

Ruchi Soni

Supervisors: Richard Teuscher and William Trischuk

University of Toronto

September 2022

Abstract

The University of Toronto contributes to the development of the Inner Tracker
of ATLAS for the High Luminosity Large Hadron Collider. Celestica, a private
company, builds the modules and hybrids. Celestica keeps a log of all the assemblies
and tests conducted on the components in a Google spreadsheet. This information
must also be uploaded onto the ATLAS Inner Tracker Production Database. The
database keeps track of the state and history of all the components. To automate
the uploading process, six scripts were written to achieve six different tasks: three
for uploading tests and three for assembling components. This report will focus
on the assembling scripts. One script assembles hybrid flexes to hybrid assemblies,
another assembles hybrid assemblies and powerboards to a module, and the third for
hybrid assemblies to hybrid test panels. These scripts require minimal interaction
with the user and are built to prevent crashes in case of errors. However, the user
must be attentive to any changes or rearrangements made in the spreadsheet. The
scripts may need to be modified accordingly to avoid errors. Otherwise, the scripts
prove to be an effective method to transfer information.

1 Introduction

The Large Hadron Collider (LHC) cur-
rently collides protons at an energy of 13.6
TeV with an instantaneous luminosity of
2×1034 cm−2s−1 (Calderini, 2022). To in-
crease the potential for discovering new
physics, physicists require many more colli-
sions to analyze. The High Luminosity LHC
(HL-LHC) project is thus developed. The
LHC will undergo a major upgrade which
will result in an integrated luminosity of
4000 fb−1 over ten years. The upgrade will
result in a pile-up of around 200 collisions
per bunch crossing compared to the cur-

rent 40 collisions per bunch crossing. The
increase in luminosity naturally requires a
detector that can survive much more radia-
tion. The detectors must be able to keep up
with the increased radiation to take full ad-
vantage of the high luminosity. They should
therefore have faster readout channels and
higher granularity.

The ATLAS detector at CERN will re-
ceive upgrades to the readout systems of the
calorimeters and the muon spectrometer, as
well as the trigger system to combat the
degradation caused by the radiation. The
current Inner Detector of ATLAS will be

1



replaced with the new Inner Tracker (ITk)
containing all-silicon pixel and strip subsys-
tems, as illustrated in Figure 1a. The pixel
system is at a smaller radius and is the first
line of detection for charged particles emerg-
ing from a collision. As a result, they have
a much higher resolution for particle detec-
tion. The strips system surrounds the pixels
and covers a larger area. It consists of five
layers of barrels which run longitudinally in
the middle, and six endcap disks on each
side of the barrels (Calderini, 2022). The
barrels are composed of staves and the end-
caps of petals, as depicted in Figure 1b.

(a)

(b)

Figure 1: The cross section of the ITk. (a)
The pixel and strips subsystems and (b) a
zoom into the barrel stave and endcap petal
with their location in the ITk. Adapted
from ATLAS Inner Tracker Strip Detector
Technical Design Report by The ATLAS
Collaboration.

The basic building block of the ITk is
the module, shown in Figure 2. Modules are
built differently for the pixels and strips and
for their corresponding staves and petals.
However, they have the same basic com-
ponents: silicon sensor, hybrid, powerboard
and readout chips (The ATLAS Collabora-
tion, 2017). A hybrid consists of the green
piece with the readout chips glued on the
top.

Figure 2: A short strip barrel module show-
ing the different components that a module
is comprised of. Adapted from ATLAS In-
ner Tracker Strip Detector Technical Design
Report by The ATLAS Collaboration.

The University of Toronto (U of T)
works on the endcap strip modules. The
endcap petal consists of 6 different module
types named R# where # ranges from 0 to
5. U of T focuses on R0 and R3 module
types and all hybrid types. Depending on
the type of module, the number of hybrids
and powerboards varies for endcaps, as in-
dicated in Table 1. A module is split into
two half-modules for R3, R4 and R5 types.
The detailed layout of the modules, half-
modules, and hybrids in the petal is shown
in Figure 3.

2



Table 1: The number of hybrids and
powerboards for each different module/half-
module type in a petal.

Type 1/2 Mod. # Hyb. # PWB
R0 - 2 1
R1 - 2 1
R2 - 1 1

R3
R3M0 2 1
R3M1 2 0

R4
R4M0 1 1
R4M1 1 0

R5
R5M0 1 1
R5M1 1 0

Figure 3: The strips endcap petal la-
belled with the module types (including full
and half-modules). Adapted from Endcap
Hybrid Wire-Bond Documentation STAR
Chipset V2.1 by William Trichuk et al.

The U of T contracts Celestica, an elec-
tronics manufacturing company, to build
the hybrids and modules. Celestica must
perform several tests on these components
to ensure their functionality. All the infor-
mation about assembling various parts and
testing them is recorded in a Google Spread-
sheet by Celestica and is shared with a few
on the U of T ATLAS group.

1.1 ITk Production Database

The ATLAS collaboration has designed
a production database for the ITk upgrades
that contains all the relevant information
regarding a component. When various
components are assembled or disassembled
physically, they must also be “assembled”
or “disassembled” in the database. Each
component has a unique identification num-
ber, as well as a code. The filled-in Ce-
lestica spreadsheets hold information that
must be uploaded to the ITk database. The
database contains the following general in-
formation about each component: a non-
unique serial number, an alternative identi-
fier, the type of the component (e.g. mod-
ule, hybrid panel), the type (e.g. R0, R1),
the stage it is currently at, its current lo-
cation, its home institute where it was first
registered, its properties (different by com-
ponent type), a list of parents and children,
and a list of tests conducted on it. The his-
tory of the stages, the history of the ship-
ments, and the history of the component’s
previous parents and children are also avail-
able.

The ITk database names components
differently. A hybrid is split into a hybrid
flex and a hybrid assembly. The hybrid flex
has an RFID number identifying it and is
physically listed on the green unit itself. It
is a hybrid without any chips on it. The
hybrid assembly is the parent of the hybrid

3



flex, as well as of the other chips (ABCStar
and HCCStar)1. The hybrid assembly can
then be assembled to either a hybrid test
panel or a module. A hybrid panel is used
to transport multiple hybrids from one loca-
tion to another before assembling them to a
module. In addition to a hybrid assembly, a
module also has a sensor and a powerboard

for children. If the module type is R3, R4 or
R5, it is split into two half-modules. Then,
each half-module may be composed of a hy-
brid assembly, sensor and powerboard in-
stead, and the two half-modules are assem-
bled to a full module. The module has a
module frame as a parent.

(a)

(b)

Figure 4: (a) An example of a Celestica spreadsheet. This one shows the Hybrid Weight sheet.
(b) Interface of the ITk database, showing the glue weight test upload page. Information
from (a) must be recorded in (b).

1ABC stands for Analog to Binary Converter and HCC stands for Hybrid Control Chip.

4



2 Motivation

Previously, the ATLAS group at U of T
manually filled in the information from the
Celestica spreadsheet (Figure 4a) to the ITk
database using the database interface (Fig-
ure 4b).

With the growing number of hybrids and
modules assembled and tested by Celestica,
manually entering the information about all
the components becomes inefficient and te-
dious. Therefore, it becomes worthwhile to
automate this process using code. The idea
was to have a script where the user only
needs to input the rows they would like to
work on. The task itself is performed by the
script on the selected rows. The transferring
of information is then much faster and pro-
ductive. The objective of this report is to
describe the properties, usage, advantages,
and drawbacks of the scripts that are writ-
ten.

3 Product

There are six scripts designed using
python for six different tasks:

• assemble flex to assembly.py

• assemble hybrid to module.py

• assemble hybrid to panel.py

• hybrid glue weight.py

• module glue weight.py

• hybrid wirebonds.py

The first three scripts are for assem-
bling one component to another, and the
last three are for uploading tests for a given
component. The three tests are hybrid and
module glue weight tests and hybrid wire-
bond tests. This report will focus on the as-
sembling scripts. The six scripts and other

relevant files are shared in a GitLab repos-
itory where it is accessible to all CERN
members.

The assemble flex to assembly.py

script takes the RFID of the hybrid flex
listed in the spreadsheet and searches for
that flex in the database. This script as-
sumes that the flex is already registered by
the institute from where it was shipped. If
the hybrid flex is already assembled to a
hybrid assembly, the script moves to the
next row. If the flex is assembled to a hy-
brid flex array, it is disassembled from it. In
this case and in the case where the flex has
no parents, a new hybrid assembly is regis-
tered. The hybrid flex is then assembled to
the new hybrid assembly.

The assemble hybrid to module.py

script assembles hybrid assemblies and
powerboards to the module. This script
does not register any components. All the
components (modules, hybrid assemblies,
module test frames, panels, flexes and sen-
sors) are assumed to be registered. How-
ever, the module’s identifying code is not
provided in the spreadsheet. Therefore, the
module code is obtained by searching for
the sensor’s parent as they are assumed to
be assembled earlier. The sensor’s ID is
first acquired by its given lot number. If
the sensor is found to have a parent with a
type different than a module or has no par-
ent at all, the row will be skipped entirely.
Each row in the spreadsheet corresponds
to either a module or half-module and can
have up to two hybrids. The script loops
through each hybrid and the powerboard
(if there is one). First, the script looks
for their parent. If the parent is the same
module as the sensor’s parent, it’s already
assembled, and nothing needs to be done.
If the sensor and assembly are assembled to
two different modules, an error is printed,
and the row is skipped. If the parent of

5



the hybrid assembly or powerboard is a hy-
brid test panel, they are disassembled and
assembled to the module (sensor’s parent).
The serial number of the powerboard is first
constructed using the powerboard number
given in the spreadsheet and a powerboard
version code to search for it in the database.
If the powerboard version changes, the con-
stant POWERBOARD VERSION defined at the
beginning of the script’s code must be mod-
ified. Before the assembly happens, the
component’s assembly properties are re-
quired. These properties include the jig
used for hybrid/powerboard alignment, the
pickup tool used, the date of the glue sam-
ple, and the jig for module assembly. The
required information is in the spreadsheet
and is simply retrieved by the script. The
RFIDs given for the jigs and pickup tools
are converted into serial numbers for easier
search through the database. If the hybrid
assembly is successfully assembled to the
module, its stage is updated to ON MODULE.
If the powerboard is successfully assem-
bled to the module, its stage is updated to
LOADED. Lastly, if all the hybrids (and the
powerboard) are assembled to the module,
the module is upstaged to GLUED.

The assemble hybrid to panel.py

script assembles hybrid assemblies to hy-
brid test panels. The panels are designed
to contain a maximum of four hybrids and
two powerboards. The sheet for this task is
arranged such that each row is a different
hybrid flex with four consecutive hybrids
having the same hybrid panel. Therefore,
for all panel types except for R3, each hy-
brid also has a corresponding position on
the panel to differentiate between them.
The R3 already has four different hybrids,
so the position is not required to distin-
guish them. The script assigns positions
(from 0 to 3) to hybrids based on the order
they appear in the spreadsheet. For ex-

ample, an R0 Test Panel’s hybrids appear
as R0H0, R0H1, R0H0, and R0H1 in the
spreadsheet; their positions would then be
0, 1, 2, and 3, respectively. The assembling
also requires two other properties, the jig
and pickup tool used for placing the hybrid
on the panel. This information is found on
a different spreadsheet called “Tools List.”
In the end, if all hybrids are successfully
assembled, the panel’s stage is updated to
HYBRIDS ASSEMBLED.

3.1 Properties of the Scripts

All the scripts are designed to not redo
operations on a row if previously executed.
The scripts work for all hybrid and module
types.

3.1.1 helper functions.py

The file helper functions.py is com-
posed of multiple general functions that are
used in the scripts. It is a python module,
and its function is to be imported into the
six scripts. The file also contains some addi-
tional functions that have not been used in
any script; however, they may be applicable
during debugging.

3.1.2 Service Account

A python library called gspread was
used to read the Google spreadsheet. The
Celestica spreadsheet is not accessible to
everyone. Viewing access was specifically
granted by Celestica to an email address for
the scripts to read data from the spread-
sheet. The relevant information required
for gspread to read the spreadsheets, in-
cluding the email, is stored in a json file
named service-account.json. The pur-
pose of service-account.json is to simply
be imported into the scripts for gspread to

6



use.

3.1.3 Progress File

After running a particular script on a
set of rows several times, it may become
difficult to keep track of the rows that
were run previously. Failure to track the
rows can be a problem, especially if mul-
tiple users run the script. To make the
script faster and to keep a log of the rows
that have successfully been processed, each
script has its text file called a progress
file which records such rows. The nam-
ing convention used for progress files is
<SCRIPT NAME> progress.txt. When a
script successfully runs its operation on a
row without errors, the row number is writ-
ten to the corresponding progress file. The
next time the script is run, there will be
an option to skip all the rows that appear
in the progress file. Note, if an error occurs
such that the task is not fully completed for
a row and the row is skipped, that row will
not be added to the progress file.

3.2 Usage of the Scripts

Each script interacts with the user in
the same manner. First, the script will
ask the user to input the row where they
want to start running the script. The row
here corresponds to the row of the Google
Spreadsheet itself (the leftmost column in
Figure 4a), not the Unit # given by Ce-
lestica. Then, the user will be asked for
the row where they would like to end pro-
cessing. To go to the very last row in the
spreadsheet, the option to write “end” as
a response is also available. Next, the user
has the choice to use the progress file for
that script. If the input is yes, the rows
in the progress file will be skipped. If the
user would like to skip any additional rows

between the start and end rows, the option
to do so appears afterwards. The skipped
rows should be written with spaces separat-
ing them. Lastly, the user will be asked for
their two access codes for the ITk database
to access and make changes in the database.

3.3 Limitations of the Scripts

The scripts written rely highly on how
Celestica arranges the columns of their
spreadsheets. Whether a column number
corresponds to the hybrid flex RFID or
whether it refers to the type of hybrid is
hard-coded. If Celestica decides to add an-
other column or delete a column, the po-
sition of other columns changes. A simi-
lar problem occurs if they switch one col-
umn with another. For example, column 1,
which is for hybrid RFID, could now refer
to the hybrid type. When the script tries to
perform the task with information from this
column, it will most likely encounter an er-
ror. Therefore, if a change is made with the
columns in a sheet, then the column indices
must be modified in the script’s code. The
column indices are defined as constants at
the beginning of the script in upper case let-
ters. Note: the column indices start count-
ing from 0 (that is, column A corresponds
to 0). One should also be watchful of typing
errors in the spreadsheet. The row positions
should ideally not be modified after running
a script, as this could lead to inconsistencies
in the progress file.

The name of the various spreadsheets
should also not be changed. The spread-
sheet used for each script is defined at the
start of the code as G SHEET NAME. This
constant must be modified if a sheet name
change is made. If the spreadsheets use any
date convention other than DD-MM-YYYY
or DD/MM/YYYY, then the result in the
database could be wrong, or the script could

7



encounter an error.

The scripts are constructed to not quit
in case of errors. However, the script can
crash if there are typos when entering ac-
cess codes or an unexpected error from the
database (a common error is code 500 when
the database is down). In this case, the user
should first try to rerun the script or run it
after a few minutes.

4 Conclusion
Institutes from all over the world are

contributing to the ATLAS upgrades for
the High-Luminosity LHC. The information
filled in by Celestica must be transferred to
the ATLAS ITk Production database. A set
of python scripts allows U of T to do the
transfer automatically. The six scripts cre-
ated each execute a different task: upload-
ing hybrid/module glue weight test and hy-
brid wirebond test, assembling hybrid flex
to hybrid assembly, hybrid assemblies and
powerboards to modules, and hybrid assem-
blies to panels. These scripts require min-
imum input from the user. In case of er-
rors, they skip the row to prevent a crash.
However, these scripts are highly dependent

on the state of the Celestica spreadsheets.
In case of any modifications to the spread-
sheet, the code must be edited accordingly.
Overall, the scripts are user-friendly and ef-
ficient, making it easier and more produc-
tive to keep the ITk database updated. In
the future, more scripts can be written as
needed. This is not a hard task since much
of the code is the same across the scripts.

5 Acknowledgements

A big thank you to Leandro Rizk, the
co-author of the scripts, for his invaluable
input and support throughout this fellow-
ship. I would also like to acknowledge my
supervisors, William Trichuk and Richard
Teuscher, for the wealth of information they
have provided regarding this project and
otherwise. The guidance of the U of T
ATLAS group is highly appreciated; a spe-
cial thanks to Laurelle Veloce for her con-
tinued assistance with the formation of the
scripts. Lastly, I thank the Institute of Par-
ticle Physics and CERN for organizing the
Summer Student Programme and provid-
ing us with the opportunity to expand our
learning.

References

Calderini, G. (2022). The atlas itk detector for high luminosity lhc upgrade. Nuclear In-
struments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 1040, 167048. https://doi.org/10.1016/j.nima.
2022.167048

The ATLAS Collaboration. (2017). Technical design report for the atlas inner tracker strip
detector.

8


