Automating data transfer to the ATLAS ITk Production
Database

Leandro Rizk
leo.rizk@mail.utoronto.ca
University of Toronto

Supervisors: William Trischuk, Richard Teuscher

19 August 2022

Abstract

The high collision rates of the High-Luminosity Large Hadron Collider (HL-LHC) will require
an upgrade for its experiments to perform adequately. The ATLAS experiment’s current detector
will be replaced with a new Inner Tracker (ITk), with installation starting in 2026. Components
that will come together to become the ITk are currently being built around the world and their
location and status are tracked on the ITk Production Database. The University of Toronto and
its partner Celestica use a Google Spreadsheet to document their progress and their tests relating
to the ITk components they are producing. A channel is necessary to efficiently transcribe the
relevant data from that spreadsheet to the ITk Production Database. Along with my collaborator
Ruchi Soni, I have developed six Python scripts that upload necessary information to the Database.
Three of these scripts are for relaying information about the assembly status of components, while
the other three are for uploading different test results. The programs written are successful and
promise to be useful. The biggest strength of the programs is that, while they perform one upload
at a time for each component, they will not crash when encountering a problem with an upload
and continue to perform subsequent uploads, all while tracking successful transmissions. A major
weakness of all the scripts is their heavy reliance on the structure and contents of Celestica’s
spreadsheet—changes or errors in the spreadsheet can impede their performance. This report
focuses more on the test upload scripts (hybrid glue weight test, module glue weight test, and
hybrid wire bonding test) while Ruchi Soni’s report focuses on assembly scripts.

1 Introduction

1.1 High-Luminosity LHC

The Large Hadron Collider (LHC)’s crowning achievement was on July 14th, 2012, when its two
major experiments, ATLAS and CMS, both reported on measurements of a particle consistent with
the Higgs boson [1, 2]. At the time of this discovery, the LHC was at its first run, with proton-proton
collisions at 7 TeV of centre-of-mass energy, and was reaching an integrated luminosity of about 30
fb~!. Ten years later, the LHC has now started its third run, with centre-of-mass energy at 13.6 TeV
and an integrated luminosity expected to reach 450 fb—!. Successive upgrades to the LHC are required
to observe more elusive events at increasingly higher energies and to gather much more data thanks
to greater collision rates. The current timeline foresees a major upgrade for the LHC, dubbed the
High-Luminosity LHC (HL-LHC). The particle accelerator is planned to collide protons at 14 TeV
and, with its intensified collision rates, it will reach an integrated luminosity of up to 4000 fb~! by
the end of its next run [3]. The fourth run is planned to begin in 2029, after three years of shutdown
(“Long Shutdown 3”), during which the upgrades of the LHC and its experiments are installed.

In Run 4, the Inner Detector currently inside the ATLAS experiment will not be able to sustainably
perform under the very high collision rates of the HL-LHC [3]. An upgraded detector will need to
be more resistant to radiation and have faster readout channels to handle the higher trigger rates.

ATLAS’s Inner Detector will be completely replaced with a new Inner Tracker (ITk) [3], shown in
Figure 1. Construction of the parts that will become the ITk is ongoing and is being handled by
different institutions around the world.

Inner Tracker (ITk)

Figure 1: Conceptual design of the Inner Tracker (ITk) and its place inside the ATLAS experiment.

1.2 ATLAS ITk upgrade

Just like its predecessor, the ITk will be the innermost layer of the ATLAS detector and its purpose
will be to track the paths of charged particles produced by collisions happening at the centre of ATLAS
[3]. The ITk will bear all-silicon high-resolution sensors and will be composed of two main constituents,
the “Pixel Detector” (closest to the centre) and “Strip Detector” (surrounding the Pixel Detector) [3].
Figure 2 shows the composition of the ITk.

The Strip Detector is further divided into a barrel and two endcaps [3]. The barrel is composed
of four coaxial cylinders, each made of a number of “staves”. Staves are double-sided 1.4-metre-long
rectangular slabs that hold silicon sensors and electronic circuitry. The main subcomponent of a stave
is called a module. Each side of a stave is composed of 14 modules. The modules of two inner cylinders
are categorized as “short strip” (SS) while those of the outer two are “long strip” (LS). Each endcap is
composed of six disks sitting at one and the other end of the cylindrical barrel. The disks are divided
into double-sided, identical petals, about 0.6 metres long. All petals have the same 6 modules, labelled
RO to R5.

Inner Tracker (ITk) Strips

Strips Petal
(6 disks on each side)
593 mm

Pixels

Strips Stave hiariis 7
(4 layers) / !

modules

I
1400 mm

Figure 2: The Inner Tracker (ITk) and its main components. The ITk is composed of a Pixel Detector surrounded by
a Strip Detector. The Strip Detector has four cylinders that form the barrel, composed of staves. Each stave hosts 14
modules on either side. The six disks on each side of the barrel are called the endcaps. These are composed of petals,
each of which have six modules on either side. EoS: End of Substructure Card.

The exact anatomy of a module depends on its type. Endcap modules R3, R4, and R5 are split
into two half-modules. Every (full) module has a silicon sensor, one or two “hybrids” (except for
R3 modules, which has a total of four hybrids), and a powerboard [3]. Hybrids are printed circuit
boards that host a varying number of application-specific integrated circuits (ASICs): these are the
ATLAS Binary Chips (ABCs) and the Hybrid Controller Chips (HCCs). Important components of
the powerboads are the DC-DC converter and the Autonomous Monitor and Control Chip (AMAC).
In the case of the R3, R4, and R5 half-modules, only the left half-module contains HCCs while only
the right half-module contains the powerboard. A detailed example of a module is shown in Figure 3
and a close look at a hybrid is shown in Figure 4.

Wire-bonds

DC-DC converter

HCCStar

Power
AMAC
Wire-bonds ABCStar

board

Glue
\-_\

Sensor

~97mm

~97mm

Figure 3: A short-strip (SS) barrel module. Like all modules, it is composed of a silicon sensor, a powerboard, and one
or more hybrids. ABCStar: ATLAS Binary Chip, AMAC: Autonomous Monitor And Control Chip, HCCStar: Hybrid
Controller Chip.

Figure 4: An R3H3 hybrid, one of four hybrids that belong on an R3 endcap module. This hybrid has seven ATLAS
Binary Chips (ABCs) and two Hybrid Controller Chips (HCCs). Chips are labelled following a numbering scheme
developed by the University of Toronto [4].

1.3 ITk development assigned to the University of Toronto

A large number of institutions are participating in the elaboration of the ITk, with different tasks
assigned to each one. The University of Toronto is tasked with putting together all endcap hybrid
types as well as endcap modules RO and R3. For the production of these components, the University
of Toronto has partnered with Celestica, a company that specializes in high-density electronics. Pro-
duction and testing of these ITk parts will be mostly done at Celestica’s Newmarket Microelectronics
Lab, less than an hour’s drive north of Toronto, Ontario.

2 Database scripts for the University of Toronto

2.1 The ITk Production Database and the Celestica spreadsheet

In order to keep track of all the moving pieces of ITk during production, the ATLAS group has
mandated Unicorn University, in the Czech Republic, with developing and maintaining the I'Tk Pro-
duction Database!. This Database keeps track of the location and status of components and tools,
as well as test results and assembly of components. Unique identifiers are associated to both real
objects (components, tools, receptacles, etc.) and virtual objects (dummy components, tests, compos-
ite objects, etc.). A common example of a composite object is the “hybrid assembly”, which is the
combination of a hybrid “flex” (the circuit board) and its assembled ASICs. Three major systems of
identifiers exist in the Database: a 32-character hexadecimal “code” is used alongside a 24-character
hexadecimal “ID” and—for most real components—a 14-character alphanumeric serial number. Other
identifiers also exist, namely radiofrequency identification (RFID). RFIDs are recorded only for those
components and tools that physically carry an RFID chip. Any of these identifiers can be used to look
up an object registered in the Database, with varying simplicity.

Authorized users can access the Database through their CERN credentials or by inputting a unique
combination of two passwords they have chosen (their two access codes).

Using the Database on an internet browser to register and assemble components or to upload test
results is a slow and tedious endeavour. The University of Toronto and Celestica instead share a
Google Spreadsheet where this same information is initially recorded. My task was to automate the
transfer of specific information from the spreadsheet to the Database using Python scripts.

2.2 Transferring information from spreadsheet to database

A total of six task-specific scripts were written by my collaborator Ruchi Soni and myself. These
were:

o assemble_flex_to_assembly.py, which assembles hybrid flexes to newly registered hybrid assemblies

Thttps://itkpd-test.unicorncollege.cz/

e assemble_hybrid_to_module.py, which assembles hybrid assemblies and powerboards to their cor-
responding modules

e assemble_hybrid_to_panel.py, which assembles hybrid assemblies to their corresponding test panels

o hybrid_glue_weight.py, which uploads results of glue weight tests to the corresponding hybrid
assembly

o module_glue_weight.py, which uploads results of glue weight tests to the corresponding module

o hybrid_wirebonds.py, which uploads results of wire bonding tests to the corresponding hybrid
assembly.

All the above scripts use the Python package gspread to communicate with the Google Spreadsheet
and requests to send read and write requests to the Database. Since the Google Spreadsheet maintained
by Celestica is private, scripts make use of the file service-account.json, which contains a private key
associated with a special email address. This email address must appear in the list of accounts allowed
to access the Google Spreadsheet. In our case, the scripts only need to be able to read the spreadsheet
and do not make any modifications to it. For that reason the service account email address need only
be listed as a Viewer—editing permissions are not necessary. Common functions used by these scripts
are grouped in helper_functions.py. Other Python packages used are typing, json, sys, and os.

The Celestica spreadsheet is divided into several sheets, depending on the type of information
contained. In the sheets that hold information that needs to be uploaded to the Database, each
component is given its own row while the pertinent data are categorized into columns.

To use one of our scripts, one is meant to clone the GitLab repository where they are found (Toron-
toDatabaseScripts)? then access the directory “Glue Weights and Assembling” and run the Python
script from a terminal. The user is expected to have their own access to the Celestica spreadsheet, for
reference, but this is not crucial. However, the user must be able to access the Database through their
two access codes. At the start, the user is asked to input the range of the rows they desire to process.
To analyse the entire sheet, the user can safely input the range “0” to “end” (“end” being the only
string accepted by the prompt). They are also asked for any exceptions in their range, that is, rows
they don’t want processed. The user is then asked to type their first and second Database access codes
to begin the operation. As the program runs, it informs the user about its progression by printing
progress messages. As it begins analyzing each row, the program prints the message, “Working on row
x.” During the process, the user is informed of each step that the program is taking. These messages
can be, for example, “x successfully advanced from [stage A] to [stage B],” “x successfully disassem-
bled from y,” or “Test for x uploaded to ITk Database.” When they arise, error messages returned by
the Database are also transcribed to the user, often with added contextual explanations. Examples
of these explanatory messages are “No component is found with the RFID x,” or “Component x is
not assembled to a parent.” Programmed contextual messages like, “Please make sure the hybrid flex
is assembled to a hybrid assembly,” can also give insight on a problem. Modifications made to the
Database through the script are recorded as having been done by the user.

In order to facilitate the task of transferring information from the spreadsheet to the Database,
each upload and assembly script works with a text file that records the row numbers of complete and
successful execution of the task. Each of these progress file is named identically to the corresponding
script but with the suffix _progress.tzt. The script writes the number of the working row on a new
line in the text file if and only if it reaches completion for that row and the last response status code
transmitted by the Database is a value in the 200s (which signifies that the request was successful).
Thus, progress files are constructed automatically and locally. Progress can be shared with other users
by pushing the textfile back to the GitLab repository. At the beginning of each script, before inputting
any row exceptions, the user is prompted to indicate if they want to use the progress file to skip over
any rows recorded as completed. (If the user chooses to not read the progress file, the script will
nonetheless still write successful rows to the file.) Since it is a regular text file, a progress file can be

2https://gitlab.cern.ch/itktoronto/TorontoDatabaseScripts

modified very easily with a text editor. A progress file can be manually populated with rows and this
will work as long as it is written one row per line.

2.3 Test upload scripts

This section will look in detail at the three test upload scripts. See Ruchi Soni’s paper® for more
information on assembly scripts.

Glue weight tests are, as the name implies, a measurement of the weight of the glue applied between
assembled components. This measurement is usually done indirectly (subtracting the weight of the
components from that of the final combination). The amount of glue needs to be sufficient to ensure
the adhesion does not fail during the lifetime of the component but not so much that it overflows. If
the weights calculated are not within certain limits, the test is marked as failed. The weight of the
glue as well as that of the relevant components need to be uploaded to the Database. In the case
of hybrid assemblies, the test evaluates the glue that binds the ASICs to the hybrid flex. This test
is performed and must be recorded on the Database at the “ASIC Attachment” stage of the hybrid
assembly, which is the initial stage for this composite object upon registration in the Database. As
for modules, the glue weight test evaluates the glue that binds finished hybrids and powerboards (if
applicable) to the module or half-module. This test is meant to be done and recorded at the “Glued”
stage of the module, early in this component’s development.

The wire bonding test is a careful assessment of the ASIC and hybrid wire bonds in a hybrid
assembly. Each wire bond is labelled by a number depending on the hybrid type and according to
a specific scheme [4]. The test involves recording the wire number of any problematic bond and the
description of the problem. The generic descriptions used in the spreadsheet are one of four: “wire
did not stick”, “heel break”, “lift”, or “other defect”. There is also a distinction to be made between
those problematic wire bond that were successfully repaired and those that were not. This data must
be uploaded to the Database at the “Wire Bonding” stage of the hybrid assembly, which is the stage
that follows “ASIC Attachment”.

For each row requested by the user, the test upload scripts gather the necessary information from
the spreadsheet by reading the appropriate columns. The program does not search for the column,
rather its location is hardcoded into the script. Some information needed by the Database is not found
in a column of the spreadsheet but can be calculated from other values (e.g., the weight of the ASICs
for hybrid_glue_weight.py or the total number of failed ASIC wire bonds for hybrid_wirebonds.py). The
pass or fail status of the test is explicitly found in a column for hybrid_glue_weight.py, while it must
be deduced for the other two. In module_glue_weight.py, if any glue weight is too far from a hardcoded
ideal value for its category, the test is recorded as failed for that component. In hybrid_wirebonds.py,
the test is recorded as failed if there is at least one problematic wire bond that could not be repaired.
In all three scripts, the component in question in each row is found through the RFID of the hybrid
flex associated with the hybrid assembly (and, in turn, associated with the module, if applicable).

Unlike the other two test upload scripts, hybrid_wirebonds.py verifies that the component is at the
proper stage before proceeding with the test upload. This is because the wire bonding test marks the
time at which the hybrid assembly stage must be promoted to “Wire Bonding”. If the hybrid assembly
is at the previous stage, the script will attempt to upstage it before continuing. The Database will not
accept the wire bonding test upload at any other stage.

When given a complete test upload request, the Database will not check to see if this upload had
already been done beforehand. There is therefore a risk of duplicating test uploads. To avoid this,
all three test upload scripts use a run number as a means of identifying the test. By default, the
run number is set to “1” in all three scripts. Before uploading, the script sends a read request to
search the Database for other tests of the same type for the component in question with the same run
number (“17). If at least one such test is found, it is assumed to be the same test and the script will

3https://particlephysics.ca/research-activities /undergrad-program-cern-papers/?lang=en

not automatically upload. It is important to note that the scripts do not actually read and compare
the individual values of the tests to determine if it is truly a duplication—this assumption is based
only on the run number. For this reason, in such a situation, the user is solicited to input “yes” to
continue with the upload or “no” to abort it. Figure 5 shows excerpts from helper_functions.py that
are responsible for this checking.

def upload_to_ITkDB(d: dict, headers=None, force_upload=False) —> bool:

“*“Upload test results in d to ITk Databse. If headers is None, user
authentication is necessary to obtain token and headers. If force_upload is
True, upload the test even if there is another test in the database for this

def is_duplicate(d: dict, headers=None) -> bool:

“iMReturn True if and only if there already exists a test in the
ITk Database with the same run number as d for the test type and component
in question. If headers is None, user authentication is necessary to obtain

component with the same run number, otherwise the duplicate test is not token and headers.
uploaded. Return True if upload is successful, otherwise return False. e

(r_code, info_dict) = get_info_response(sn=d['component'], headers=headers)
if headers == None:

headers = get_headers() duplicate = False
if is_duplicate(d, headers) and not force_upload:
print('{} test with run number {} already exists'.format(
d['testType'], d['runNumber'])
+ ' for {} in ITk Database.'.format(d['component']))

if 'tests' in info_dict:

for test_type in info_dict['tests']:
answer = None
while type(answer) != bool:
answer_str = required_input(
‘\nWould you like to upload this test anyway?'
+ ' (Enter Y or N)\n'
)
answer = convert_to_bool{answer_str}

if test_type['code'] == d['testType'l:

if 'testRuns' in test_type:
if not answer:
print(‘Test upload aborted for {}.'.format(d[‘component']))
return True

for test_run in test_typel'testRuns']:
if test_run['runNumber'] == d['runNumber']:
duplicate = True

json_str = json.dumps(d, indent=4)

json_bytes = bytes(json_str, 'utf-g8'})

r = reguests.post(url=URL_POST_TEST, data=json_bytes, headers=headers) return duplicate

(a) (b)

Figure 5: (a) First portion of the function “upload_to_ ITkDB” in helper_functions.py. The function is designed to ask
the user if they want to upload a possibly duplicate test to the ITk Production Database. (b) The entire function
“is_duplicate” in helper_functions.py, which looks for test uploads with an identical run number for the same component
in the Database.

2.4 Additional functionalities of the scripts

The Python scripts support a number of modifications to alter their performance. Many constants
defined at the beginning of the scripts can be changed if needed. Such changes may be necessary to
ensure the continued performance of the scripts when changes are made to the spreadsheet or perhaps
to accepted values of glue weight tests.

If any alteration is made to how the Celestica spreadsheet is organized, it is crucial to redefine the
column mapping. This map is simply the constants that represent the relevant data columns defined
at the onset of every script. It is important to note that the assigned value to these constants is the
column’s index from 0, so the nth column in the spreadsheet has value n — 1 assigned to its constant.
The program is hardcoded to take information from the right column in this way.

Since the script module_glue_weight.py analyzes the success of the test automatically to determine
if the component passes or fails, a change in acceptable glue wieght standards must be accompanied
by a change of the constant Python dictionaries “GW_IDEALS” and “GW_TOLERANCES”. These
constants represent respectively the values for the ideal glue weights per component type and those
for the accepted tolerance for any deviation from the ideal, both in milligrams.

One rather trivial change that can be made to any test upload script is redefining the constant
“DEFAULT RUN_NUMBER?” (originally equal to “1”). This can be changed to any string and is used
by the program to help individualize test uploads in order to minimize accidental duplications.

The scripts also include a number of functionalities that are not utilized under normal operation.
These can be harnessed by changing arguments in functions written in the test upload scripts or in
helper_functions.py.

In the case that a user may want to intentionally upload successive tests of the same kind to
the same component, the user can enter their own run number for every test upload. To do so,
the argument for the parameter “run_number” from “DEFAULT_RUN_NUMBER” to “None” in the
functions “get_hybrid_gw_test_results”, “get_module_gw_test_results”, or “get_hybrid_wb_test_results”
in their respective test script. As a result, the user will be prompted to enter a run number of their
choice for each test upload during the execution of the program. Otherwise, it is possible to make the
program simply forgo any checking for duplicates. This means the program uploads any complete test
to the Database regardless of the existence of another test for the same component with an identical
run number. This is done by changing the argument for the parameter “force_upload” from “False”
to “True” in the function “upload_to ITkDB”.

Another modification involves adding the ability to tag a test result as problematic. The Database
is designed to allow the user to flag whether or not there was a problem in the execution of a test.
However, as of this writing, the Celestica spreadsheet has no area to indicate this possibility and
so it is not expected that a test should be flagged as problematic during automated uploads via
the Python scripts. Nonetheless, the test scripts are designed to allow such flagging after changing
the argument for the parameter “problem” from “False” to “None” in the specific functions used
to construct the Python dictionary that will be sent to the Database (“get_hybrid_gw_test_results”,
“get_module_gw_test_results”, and “get_hybrid_wb_test_results”). Doing so will trigger a prompt for
each test upload during the execution of the program asking the user to input “yes” or “no” to indicate
the presence of a problem. Changing this argument to “True” instead automatically flags all uploaded
tests as problematic. (This likely has limited usefulness.)

The function “save_as_json” defined in helper_functions.py is originally unused. It can be added to
any of the test scripts just before the function “upload_to ITkDB” to save the test results gathered
from the spreadsheet as a json file on the user’s local machine.

Finally, many functions defined in helper_functions.py can also be used manually to read infor-
mation from the Database much faster than can be obtained by navigating using a browser. A
user would simply need to open a Python shell, import helper_functions.py and call on functions
such as “get_rfid_from_sn”, which returns the RFID of a component given another unique identi-
fier, or “get_component_subtype”, which returns the subtype of a component given its identifier, or
“get_child_codes”, which returns a list of the component codes of all the components assembled as
“children” (subordinates) to a given component identified by a unique identifier.

3 Discussion

3.1 Strengths of the scripts

The biggest strength of these database scripts is that they resist crashing when they encounter a
problem or error. Instead of quitting, the program will abandon the current working row and move to
the next row in the requested range. Some errors can arise from incomplete or inconsistent information
in the spreadsheet; the program can often identify these and announce it to the user through a printed
message (e.g., “No RFID given to search for,” or “Wirebond number not in U of T catalog”) before
skipping to the next row. Other, more insidious errors can arise from the Database refusing a request
for one of a multitude of reasons (e.g., the component cannot be found, the component is in the wrong
location, the component is at the wrong stage, etc.). When a row is skipped, it is not recorded as
completed in the corresponding progress text file, even if some steps of the process had been successful.

All scripts are designed with the idea that a user may intentionally or accidentally process rows
that have already been done, in part or in full. The scripts are designed to not duplicate any work on
the Database. Assembly scripts will verify the current assembly status and component stage before
sending a write request to the Database. Since these assembly scripts usually send a sequence of many
write requests, a verification is done before every such request—the program does not assume that if
a previous step is complete then subsequent steps are also complete. Test upload scripts will search
for the existence of a test with an identical run number before sending the upload.

Generally, relying on a user for inputs during the execution of a program can lead to unexpected
inputs. For this reason, the database scripts anticipate that it might receive nonsense answers from
the user and are designed to react appropriately to the wrong type of input. For example, when asking
a yes/no question, the program will accept (without regard to letter case) “yes”, “y”, “true”, and “t”
as yes and “no”, “n”, “false”, and “f” as no; all other answers will prompt the question again. When
asked for a range of rows, the program will only accept integers (and for the endpoint, it will also
accept the string “end”), prompting again otherwise. If the range given is larger than what exists in
the spreadsheet (e.g., if asked for rows -3 to 5000), the program will still analyze any existing rows
within this range. When asking what rows the user wants to skip, any nonsense or out-of-bound
answers are ignored. The excerpt from helper_functions.py that allows for this robust management of

user input is shown in Figure 6.

def get_rows_from_user(data):
*''Asks the user for the rows where they would like to operate, which may
depend on data.''’

start_row = input(
"Enter the row number where you would like to begin processing.\n"

)

while type(start_row) != int:
try:
start_row = int(start_row)

except:
print('Invalid input. Input must be an integer.')
start_row = input(
'Enter the row number where'
+ ' you would like to begin processing.\n'
)

end_row = input(
'Enter the row number where you would like to end processing.\n'

+ 'To go until the end, type "end".\n'
)

while type(end_row) != int:

if end_row. lower() == "end":
end_row = len(data)

else:

try:
end_row = int{end_row)

Figure 6: First portion of the function “get_rows_from_user” in helper_functions.py. The function prompts the user on
a loop until it receives a reasonable input.

Another problem foreseen in the scripts is the possibility of the user’s access expiring in the middle
of the execution of the program. This is unlikely to happen during normal usage as this would require
a considerably large number of rows to analyze in order for credentials to expire after over a dozen
minutes. If this happens, however, the user is warned and prompted to input their two access codes
again to re-authenticate. When doing so, no progress is lost.

3.2 Limitations of the scripts

A few events will in fact make the programs quit. One quick way to end one of these programs is to
input the wrong access codes. Another possible reason for the program to quit is when it encounters
a database timeout (if the Database is down or unresponsive). Other unpredictable database errors
can make the operation stop. Fortunately, the progress of successful rows made before an error or
interruption is still recorded in the appropriate progress file. Because of the erratic nature of these
errors and interruptions, the best course of action when a script fails for these reasons is to simply run
the script again.

A major weakness of the database scripts is their high sensitivity to changes in the structure of the
Celestica spreadsheet. Unless specific edits are made to the scripts, they will tolerate no sheet name
changes and no rearrangement of columns. If rows are rearranged after an initial usage of a script,
any mixing of rows in the spreadsheet may result in the loss of coordination with the corresponding
progress file. Inconsistency in the date format used in the spreadsheet may also cause errors: the
programs are designed assuming all dates remain in the format DD/MM/YYYY or DD-MM-YYYY.

The scripts can only be as good as the Celestica spreadsheet allows. Any errors in the spreadsheet
may ultimately be sent to the Database. If the error is nonsensical enough (e.g., incompatible compo-
nents to assemble), the Database will fortunately refuse the write request and subsequently return the
corresponding error message. However, some sneaky errors such as an incorrectly recorded glue weight
will not be refused by the Database and that error will be uploaded. The scripts are not designed—and
do not have the permissions—to correct anything in the spreadsheet.

3.3 Challenges

One major challenge in developing code for the ITk Production Database was that it is overly
fastidious. A write request will be refused by the Database for a variety of trivial reasons, often
related to the component’s status, stage, or location not being up-to-date on the Database. Often
times, these updates need to be brought by other collaborators from other institutions or may require
the intervention of a user with high authority in the Database. A lot of coding was dedicated to
working with such obstacles, which were discovered after considerable trial and error.

The Database will occasionally fail to recognize a component by its serial number during certain
action requests, but it will still recognize the component code or ID. This happened very rarely—we
only saw this with some assembly requests. To work around this oddity, the scripts are equipped to
look up a different identifier for the component when an action request fails with a serial number. The
irony in this situation is, of course, that the serial number is successfully used to find another identifier
but not to perform an action such as assembling.

The Celestica spreadsheet was also a source of challenges. Scripts had to be reworked during their
development following last-minute structural changes in the spreadsheet. Most dates were written
in the DD/MM/YYYY format, but the MM/DD/YYYY was occasionally used, providing the wrong
date to the Database. A lot of work was done to have the programs try and recognize problems in the
spreadsheet before attempting to send a write request to the Database.

3.4 Impact

In the few weeks since their development, the six database scripts developed by Ruchi Soni and
myself have already proven useful to the team at the University of Toronto. Some sections of our code
are being used in future scripts aimed to perform other tasks with the Database.

4 Conclusions

In summary, six Python scripts were written with the objective of uploading data from the Google
Spreadsheet shared between Celestica and the University of Toronto to the ITk Production Database.
Three scripts sent information on component assembling and three scripts sent component test results.

All scripts keep the user informed of the steps they are taking during their run and resist crashing
when they encounter one of many common problems in an upload. The scripts are capable of recog-
nizing some problems and communicating them to the user. They keep track of their progress locally
in a text file, which is easy to modify and push back to the remote repository if desired. The written
programs are, however, highly sensitive to any structural changes or content errors in the spreadsheet.

The Python scripts show promise in their usefulness to teams at Celestica and at the University of
Toronto working on the ITk upgrade. They are on track to being used extensively once component
production begins in earnest. Future scripts for uploading other information to the ITk Production
Database may be developed using sections and ideas from these ones.

10

References

[1] The ATLAS Collaboration, “Observation of a new particle in the search for the standard model
higgs boson with the atlas detector at the lhc,” Physics Letters B, vol. 716, no. 1, pp. 1-29, 2012.

[2] The CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC,” Physics Letters B, vol. 716, pp. 30-61, sep 2012.

[3] The ATLAS Collaboration, Technical Design Report for the ATLAS Inner Tracker Strip Detector.
CERN, 2017.

[4] W. Trischuk, L. Valoce, D. Sperlich, K. Dette, S. Beaupre, L. Poley, S. Issinski, and C. S. Contell,
Endcap Hybrid Wire-Bond Documentation: STAR Chipset V2.1. 2022.

11

	Introduction
	High-Luminosity LHC
	ATLAS ITk upgrade
	ITk development assigned to the University of Toronto

	Database scripts for the University of Toronto
	The ITk Production Database and the Celestica spreadsheet
	Transferring information from spreadsheet to database
	Test upload scripts
	Additional functionalities of the scripts

	Discussion
	Strengths of the scripts
	Limitations of the scripts
	Challenges
	Impact

	Conclusions

