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Abstract

As part of the CERN Summer Student Programme 2022, I worked with the ATLAS Detector Col-
laboration. My research was affiliated with the ‘Non Resonant BSM in 4-tops’ group, working on tt̄tt̄
cross section measurement, and new physics BSM searches using tt̄tt̄ (2 same sign lepton/3+ lepton final
states) production. My specific analysis focused on the effects of SMEFT parameter introduction on
the yield and shape of the nominal 4-top signal. Different center-of-mass (CM) frame variables were
explored to determine which ones provided the best shape difference from the nominal signal, to provide
difference on which to train future neural networks. Yield and shape comparison plots were created
for many CM variables, distinguishing the nominal signal from the EFT-varied signal. The variables
that were found to have the largest shape differences were those involving top quark momentum: ΣPtop,
minPtop and maxPtop. Future continuations of this analysis could include implementing these variables
into the training of a Neural Network, namely GNNs.
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1 Introduction

As part of the CERN Summer Student Programme 2022, I took part in High Energy Physics (HEP)
research during the summer. My project was within the ATLAS Detector collaboration, one of the collabo-
rations associated with the particle detectors around the Large Hadron Collider (LHC) at CERN in Geneva,
Switzerland. I worked under the supervision of Abhishek Sharma, a postdoc at the University of British
Columbia, spending half my summer working at UBC and the other half working remotely from the CERN
campus in Geneva, along with fellow students from around the world partaking in the Summer Programme.

My research was affiliated with the analysis being conducted by the ‘Search for Non-Resonant BSM in
Four-Tops’ Working Group, which is an ATLAS Collaboration research group working on the measurement
of 4-top-quark (tt̄tt̄) production, as well as the search for new physics Beyond the Standard Model (BSM)
with four top quark events. Using ATLAS detector data from the LHC’s Run 2 (2015-2018) with a collision
center-of-mass energy of

√
s = 13TeV , tt̄tt̄ events are selected if they contain a same-sign lepton pair, or

three or more leptons (electrons and muons). Jet multiplicity, flavour and kinematics are also used to further
distinguish the signal [1]. At the time of my contributions, the analysis was not unblinded to real data, and
was working with Monte Carlo (MC) simulations of four-top production. My research specifically focused
on the BSM aspect of the analysis, exploring new-physics effects in the context of Standard Model Effective
Field Theory (SMEFT). I explored the comparison of yield and shape differences in the signal distribution
caused by the activation of different EFT parameters, using different regions of the phase space.

1.1 What is Standard Model EFT?

Standard Model Effective Field Theory (SMEFT) is a model-independent framework for characterizing
deviations from the Standard Model (SM) predictions in experiments. This EFT provides a structure to
some of the possible extensions of the SM, which are integral in the search for physics Beyond the Standard
Model (BSM). In SMEFT, it is assumed that the quantum numbers of SM particles are correctly assigned,
which gives the structure of the terms in the SM Lagrangian with dimension 4 or less, while knowing that
it is incomplete. The effective field theory allows for higher order interactions between known particles
while still respecting Standard Model symmetries. In this regard, SMEFT essentially modifies and alters the
couplings between existing SM particles in a minimal way, such that evidence for BSM physics is present
and accounted for, but not constrained to a specific BSM model with specific new particles. The possible
strengths of the higher order interactions are constrained by observed experiment data. Due to extreme CP
violation with (most) odd-dimension operators, standard EFT analyses look at dimension-6 operators. Of
the 2499 possible dimension-6 operators in the SMEFT Lagrangian, many are disregarded due to simplifying
assumptions about flavour structure and symmetries [8].

The SMEFT Lagrangian takes the form:

LSMEFT = LSM +
∑ ci

Λ2
Oi (1)

where O are the operators, c are the Wilson coefficients determining the strength of its related operator,
and Λ is the energy level which is being probed (in our case Λ = 1TeV ). This is a low enough energy that
the higher dimension-8 operators, at the order of 1/Λ4, can be neglected.
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Our analysis looks at five Wilson coefficients of SMEFT operators in the Warsaw basis: c1QQ, c
1
Qt, c

8
Qt,

c1tt, and Ĥ—the Higgs Oblique Parameter. The subscript represents the particle on either side of the
interaction, with Q being a left-handed heavy quark doublet and t a right-handed top-type quark singlet [4].
The superscript represents a difference in spin structure between the input and output of the interaction.
The Higgs Oblique parameter is the only dimension-6 operator that modifies the Higgs boson propagator
[9].

The goal of EFT analyses is to use precision measurements of, in our case top and Higgs production,
to constrain the possible values for the various Wilson coefficients. This is difficult to do methodically and
systematically as the behaviours of the operators are sometimes interrelated and correlated.

1.2 Description of 4-top tt̄tt̄ production

The top quark, t, is the heaviest known fundamental particle, coupling more strongly to the Higgs boson
(which gives it its mass) than any other particle. This higher energy level at which the top quark exists
leads to large predicted couplings to hypothetical new particles in BSM models, which is why rare processes
involving the top quark are so important to study [2]. The processes that are being studied in this analysis,
are those where two top quarks, tt, and two antitop quarks, t̄t̄, are produced, creating a “four-top,” or tt̄tt̄
process. These processes come in many varieties, including interactions with gluons, Higgs bosons, and other
fundamental particles. A few examples of Feynman diagrams representing theses processes are given below,
in Figure 1.

(a) Gluon Interaction (b) Higgs Decay

Figure 1: Two common tt̄tt̄ production processes that contribute to signal [2]

Within the ATLAS detector, these produced top quarks (almost)1 always decay into a W± boson and
b quark. Then, the W boson either decays leptonically into a lepton and a neutrino, or hadronically into
qq̄′, while the b-quark turns into a spray or “jet” of fundamental particles seen by the detector. It is these
final states which the detector “sees,” and by which the signal is distinguished. As one can imagine, certain
other processes with similar final states will produce large amounts of background which must be accounted
for. One such example of a large background process with a similar final state is that of tt̄ production in
association with b jets, as shown below in Figure 2. Another complication in separating the tt̄tt̄ signal from
the background is that neutrinos are essentially invisible to the detector, and can only be deduced to have
existed in the detector from the missing transverse energy, �E T , of the collision. Jet multiplicity, jet flavour,
event kinematics, as well as other observables are used to separate signal from the background.

This specific analysis looked at four-top production containing two same-sign leptons, or at least three
leptons, as the alternative single lepton/opposite-sign lepton pair signal has backgrounds which are extremely
hard to isolate.

1.3 Why is tt̄tt̄ useful for EFT interpretations?

There are a few reasons why the tt̄tt̄ production process is extremely relevant to study and is ideal for
searching for confirmation of BSM models. As mentioned previously, the top quark is predicted to have large

1almost always because in CKM matrix, the t to b coupling Vtb ≈ 0.99
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Figure 2: tt̄ production, with b-jets, a large background contribution [2]

couplings to hypothetical new particles, which provides many mechanisms by which to increase the cross-
section of tt̄tt̄ production. These include gluino pair production in supersymmetry theories, scalar gluon
pair production, heavy scalar or pseudoscalar boson production with tt̄ in type-II 2-Higgs-doublet models,
as well as others [2]. Also, the large mass of the top quark implies a large coupling to the SM Higgs boson
and, as seen in Figure 1b, modifying that coupling will greatly affect the cross-section of tt̄tt̄. One such EFT
parameter that does this is the Higgs Oblique parameter, Ĥ, which is the Wilson coefficient of the only

dimension-6 operator that modifies the Higgs boson propagator within a Universal EFT: LĤ = Ĥ
m2

h
|DµDµH|

[9]. Modifying the value of the Ĥ parameter will have a direct impact on the abundance of the Higgs channel
four-top production, creating a measurable difference in signal strength from the SM prediction. Other
EFT operators which affect the couplings between quark doublets and singlets have similar effects of the
production rates of tt̄tt̄.

While tt̄tt̄ had already been introduced as a worthwhile and relevant candidate for BSM investigation
from a theoretical point of view [9], the incentive to research tt̄tt̄ experimentally was reinforced by physical
observations in a 2021 paper: “Measurement of the tt̄tt̄ prouction cross section in pp collisions at

√
s = 13TeV

with the ATLAS detector” [2]. The paper measured the four-top production cross-section of events with a
single lepton or two opposite-sign leptons, in combination with multiple jets. It also combined the results
of this search with the cross-section measured from a 2020 paper [3], where the inclusion criteria were two
same-sign leptons, or more than three leptons. Via the combination of these two papers, a signal strength
of µ = 2.0 ± 0.4(stat.)+0.7

−0.5(sys.) = 2.0+0.8
−0.6 was measured.2 The signal strength, µ, represents the amount

of signal measured in relation to the expected amount from the Standard Model (µ = 1 if the SM is true).
Although, with uncertainties, the measured µ is only a couple standard deviations away from the SM, the
fact that there is any deviation at all is motivation for BSM searches in this realm.

2 Existing Analysis / Tools

Within the EFT part of the overall analysis, these are the tools and programs being used when I started
my research. I joined the analysis, working with programs like trex-fitter and mva-trainer, as well as
tools such as Recursive Jigsaw Reconstruction variables and Boosted Decision Tree-made signal regions.

2.1 TRExFitter

TRExFitter is a code framework created for binned profile maximum likelihood fits, and the default
fitting tool in the Top Working Group at ATLAS. Its name derives from ‘Top Related Experiment Fitter’
and (unfortunately) has no real relation to the Tyrannosaurus rex. It utilises CERN-specific .root data
files, to fit given signal and background region “template histograms” to data. The data being fit to in

2The stat. uncertainties come from the fact that tt̄tt̄ production is a rare process, and the syst. uncertainties come from the
fact that it is a difficult process to measure.
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our analyses so far is simply a Monte Carlo (MC) created Asimov data set3, as this analysis is not at the
‘unblinding’ stage yet. TRExFitter is run by a .config file in which the different regions, samples, and
other configurations of the fit are specified [7].

TRExFitter follows the standard HEP histogram fitting procedures, and this analysis utilizes some new
data analysis techniques such as Recursive Jigsaw (RJ) Reconstruction and Boosted Decision Trees (BDTs).
Regions are selected to maximize and differentiate signal over background. This is partly done with the
variables created from the RJ analysis explained below, which are then fed into the BDT to define a Signal
Region within the phase space (which contains at least < 20% background processes). Adjacent orthogonal
regions are then chosen as Control Regions (CRs), and it is in these region where the fitting takes place.
Some CRs are created with specific background processes in mind, and try to single them out via phase space
cuts. Each different background-specific CR from the MC model samples is then ‘floated’ simultaneously to
match the values seen in the data, in our case Asimov. From this, a ‘Normalization Factor’ for each major
background is determined via:

NF =
Ndata −NSM

other

NSM
bkg

(2)

where NSM
bkg is for a specific process. In theory, NSM

bkg ·NF +NSM
other should exactly equal Ndata, however this

won’t be the case as many different (and sometimes correlated) CRs and background processes are being
fit at once. This is what the fit is optimizing. The normalization factor at which the MC is floated is then
applied to the Validation Region(s) (separate from the SR and CRs) to confirm its validity, and the validity
of the assumption that the ratios between the MC simulation and the data stay the same between all regions
of the phase space. The norm. factors, NF , are then applied to their respective backgrounds within the
Signal Region, to determine the signal strength, µ:

µ =
Ndata −Nbkg

NSM
sig

(3)

where Nbkg =
∑

i NFi · NSM
bkgi

, and NSM
sig is not scaled, so that NSM

sig · µ = Ndata − Nbkg. From this it can
be seen that if the Monte Carlo Standard Model Simulation was completely accurate to observed data, µ
would be 1.

2.1.1 EFTRExFitter

EFTRExFitter is a modification to the original TRExFitter framework to better allow for the specific
functionalities needed for SMEFT interpretation. Spearheaded by the ATLAS TopX Group, specifically
the ‘Non-resonant BSM in 4top’ Group, EFTRExFitter was originally implemented by Josh McFayden as
an automation to the “hacks” that previous EFT analyses with TRExFitter used [11]. It adds a few new
functionalities, including a new sample type “EFT SM Reference” where the simulated ‘EFT Variation
Samples’ can be loaded to derive a parametrization of the EFT parameter. In this new sample type,
the coefficient of the specific Variation Sample is also inputted. With multiple different coefficient-strength
Variation Samples for the same EFT parameter, the new EFTRExFitter can produce ‘QuadFits’ of the effect
of the parameter on each separate bin, which are essentially quadratic fits on how different levels (coefficients)
of the parameter affect the yield of each bin. These fits are quadratic because the EFT parameters enter
into the Lagrangian quadratically. An example of a QuadFit plot can be seen below in Figure 3.

2.2 Recursive Jigsaw Reconstruction, RJR

Recursive Jigsaw Reconstruction (RJR) is a method of reconstructing the center-of-mass variables of the
collision, from the final-state detector variables. This makes it easier to create intuitive regions for specific
variables that are more representative of the physics behind the collision, and not simply just what the
detector outputs.

3A range of process-specific MC simulations, using generators tuned for particular processes, are used to simulate all the
backgrounds that can enter the process.
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Figure 3: An Example of a QuadFit EFTRExFitter plot, for the EFT parameter c1Qt in the 5-bin Control
Region VV3lm

RJR uses known physics constraints to reconstruct the kinematics of the collision. These include con-
straining the invariant mass of the neutrinos to approximately zero— mνν ≈ 0, constraining the possible
values of the missing energy vector— �E T = (|�pT |, �px, �py, �pz = 0), equating the average angle of visible
and invisible final states— ηνν = ηvisible, and matching the masses of the collision level particles to the
top-mass, among many other physics constraints. This allows information (that would otherwise not be
directly readable from the detector) such as the momentum of, or the angular spread of the top quarks to
be obtained.

Some of the RJ-created variables/regions that I used in this analysis were the following: ∆ϕCM
l , ∆RCM

jb ,

∆RCM
jj , ∆RCM

lb , and pCM
t , among others. The CM in these variable names represents the center-of-mass

frame of the collision—the frame of the reconstruction. The ∆ϕ and ∆R represent the difference in the
angular vairbales ϕ and R, comparing the objects in the subscript: where l represents a lepton, j represents
a hadronic jet and b represents a b-jet specifically. The variable pt is the momentum of the top quarks.
These variables are explained in greater detail in Appendix B.

For the MC samples used in this analysis, the RJR versions were accessed by tagging on RJR to the MC
file names via a python script named make rjr.py.

2.3 Boosted Decision Trees, BDT

The purpose of the Boosted Decision Tree is to create a Signal Region for the samples via phase space
cuts, in essentially asking the question “Is this event background-like or signal-like?” When training the
decision tree, it is given the information of whether it is being fed background or signal samples. It then
picks a cut value for a particular input variable (in our case, the RJ variables are fed into it) and decides
whether that cut differentiates between signal and background or not. The boosted part of this decision tree
arises from the fact that it can make refinements to its cuts, and essentially ‘learn’ from how it performs on
previous cuts. The BDT maximizes the background-signal distinction with its optimally refined cuts to the
phase space, based on the input variables.

The BDT then creates a binary continuum of cuts, ranking them on a scale from -1 to 1, with -1 being
the most background-like, and 1 being the most signal-like. In our analysis, this is re-scaled from 0 to 1,
with 1, again, being the most signal-like.

2.4 mva-trainer & Graph Neural Networks, GNNs

Later in my work term, the utility of machine learning (ML) algorithms, other than BDTs, on EFT
distinction was explored. Specifically, Graph Neural Networks (GNNs) were thought to be the most useful
in distinguishing the effects of EFT parameter presence, due to the nature of its representation of the input
data.
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GNNs are a type of neural network, used for data that can be represented as graphs. This allows
for “connection” between the input variables, in a way that correlations and associations are more easily
represented. This is useful for EFT analysis, as many EFT parameters are inter-correlated, and shape
distinction can be better utilized to train the network. Part of the reason other (non-BDT) ML algorithms
were explored is because BDTs tend to wash out minimal shape differences, which is the most useful tool in
distinguishing EFT effects. This improvement of GNNs over BDTs is supported by preliminary results from
the overall 4-top analysis. From a recent test, “GNN improves 5-10% compared with BDT.” [12]

I used the program mva-trainer for the implementation of GNNs in this research. This program is
“a framework for the training of deep neural networks and decision trees,” [6] which contains support for
multiple different types of neural networks. I worked with Albert Kong, from the University of Adelaide, on
the implementation of mva-trainer in this 4-top BSM analysis.

3 Procedure / My Contributions

3.1 Working with EFTRExFitter

I have been running EFTRExFitter, as well as the original TRExFitter, with Monte Carlo simulated
EFT-varied signals. The EFT Signals (other than Ĥ) are specific re-weightings of the original MC SM
simulation, in the particular way that introducing a specific EFT parameter with a specific coefficient would
cause. Right now, only one EFT parameter is varied or introduced at a time, but the sample files also
contain combinations of c1QQ, c

1
Qt, c

8
Qt, and c1tt being varied together. The signal region, defined by the BDT,

optimizes the signal of tt̄tt̄ containing two same-sign leptons, or 3 or more leptons. Different .config files
are then run in (EF)TRExFitter, creating fits and producing plots. The program also outputs histogram
.root files, which contain the yields of the different processes and EFT varied signal.

Using different config files discussed below, I wrote a python script to plot the EFT signal yields, or
rates, at different strengths compared to the nominal tt̄tt̄ of the given config. Examples of these plots can be
seen in Appendix B. The Wilson coefficients representing the strengths of each parameter can be seen in the
legends of the plots. I also wrote a script normalizing the EFT yields to the “area” of the nominal histogram,
for the purpose of comparing shape differences caused by the introduction of certain EFT parameters. For
the same parameters as the previous figures, some examples of the shape comparison plots can also be seen
in Appendix B.

I later modified this script to normalize the nominal yield and EFT-varied yields to an “area” of 1, to
quantify the difference in shape with a separation percentage defined by:

Sep. = 0.5
∑ (t− e)2

t+ e
× 100% (4)

where t is the normalized nominal tt̄tt̄ yield for a given bin, e is the normalized EFT-varied yield for a given
bin, and the summation is over all bins in the histogram. This is partly derived from the Kolmogorov-
Smirnov Test for probability distribution comparison. As this equation sums over the number of bins, it
encodes the importance of bin granularity into the final separation percentage. The values for the separation
percentage can be seen at the bottom of the shape comparison plots mentioned above, in Appendix B.

3.1.1 Config File Differences

At first, I ran older config files constructed for the original TRExFitter (not the EFT modified version), to
get a sense of the functionality of the program. Those configs included all the RJ-variable specific validation
regions previously defined for the analysis, however no systematic uncertainties (also called systematics).
The config labelled FourTop RJ.config was first run with the Higgs Oblique-modified samples designated
as Type: SIGNAL as well as the nominal tt̄tt̄ Next to Leading Order (NLO) signal. This was however, an
incorrect comparison, as the Ĥ-modified sample was simulated at Leading Order (LO), not NLO. After that
was realized, the config was rerun using “tttt EFT default” as the nominal signal, which was created at
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LO and under the same regime as the other EFT variations (excluding Ĥ). In Figure 4, it can be seen
that the yield of the nominal signal does indeed change between NLO and LO, confirming that the correct
regime matters. At first glance in Figure 4, the NLO nominal sample (7a) seems to fit the shape of the Higgs
Oblique variation better than the LO EFT default nominal (7b) does, however this may just be due to the
Ĥ samples being produced in a different regime, discussed more in section 3.1.2.

(a) Ĥ compared to NLO tt̄tt̄ nominal (b) Ĥ compared to LO tt̄tt̄ EFT default nominal

Figure 4: Comparison of difference in nominal yield in the RJ variable region HCM
n,1

This “old” config was then also run with c1QQ and c8Qt being varied one at a time, as a preliminary
shape difference overview, however the yields in the ‘rates’ plots were not appearing as expected. The rates
of tt̄tt̄, when modified by one of the EFT parameters, were all (or almost all) appearing lower than the
nominal rate of the 4-top EFT default LO signal, when the opposite is expected. An example of this can
be seen in Figure 5, showing the EFT = 0 samples far below the nominal. In reality, the EFT samples
where the parameter coefficient equals zero should match the rates of the nominal, whereas this was not
the case. This was assumed to be due to how the MC EFT samples (excluding Ĥ) were generated— each
EFT-parameter-modified signal sample was not completely regenerated on its own, but is simply a specific
reweighting of the nominal 4-top sample. The plot described above was most likely an artefact of an error in
reweighting. After this was discovered, an up-to-date ‘replacement’ file was found and used, which specifies
the weighting scheme.

After the above steps, the functionalities of EFTRExFitter were explored, as it is better suited to EFT
analysis. The config files used were based on EFTRExFitter config files written by Xiang Chen for related
4-top EFT analyses [5]. After testing out multiple versions of these configuration files, the ones that gave
the best results were the files which gave a reweighting to the LO EFT samples to match the ‘regime’ of
the NLO nominal tt̄tt̄ sample, named with AppRatio [5]. In the config-file sample specification for each
EFT-varied ‘signal,’ the type was now specified as Type: EFT, and the sample block also specified the
value of the Wilson coefficient as well as the EFT parameter title and nominal signal reference. The main
difference of these configs was their inclusion of DivideBy: Ref EFT LO and MultiplyBy: Ref EFT NLO,
which essentially ‘reweight’ the LO EFT samples to the nominal NLO regime. In this way, we can still
use the higher order NLO samples for the nominal 4-top signal, while being able to compare to LO EFT
variations. The Ref EFT LO and NLO references were introduced into the config file as Ghosts. This config
produced the best results (the EFT=0 samples matched the nominal yields as seen in Figure 6 & all the EFT
modified yields are above the nominal sample), and so was used on all the EFT parameters individually:
cQQ1, cQt1, cQt8, ctt1, and Ĥ. However, as EFTRExFitter fits each bin separately, to minimise run-time
only a few of the RJ-variable regions were input into the config, again with no systematics.

Plots were created comparing the yields and shapes of different values of each of these parameters, seen in
Appendix B.4. As these configs were run with EFTRExFitter, the previously mentioned QuadFit plots were
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Figure 5: An example of a false re-weighting of EFT-varied signals, causing them to be below the nominal.
EFT parameter c1QQ is being varied in the RJ variable region ‘∆ϕV T combined ’

also created for each RJ-region for each EFT parameter. Later, more RJ-variable regions were added, and the
general ‘blanket’ cross-section systematics were added for each of the background and signal samples. This
then allowed Negative Log-Likelihood plots to be produced via running the fit, quantifying the Confidence
Level of the ‘amount’ of EFT presence in the simulated data. These plots, as well as an uncertainty on the
EFT parameter coefficients, can be seen in Appendix A. The plots demonstrating yield and shape differences
for some of the RJ-variable regions, as well as the QuadFits, can be seen in Appendix B.4. A couple new
BDT signal regions were also created, to try to improve upon the shape distinction present in the original
SMBDT. These BDT signal regions can be seen in Appendix B.1.

Figure 6: The same region and EFT parameter as Figure 5, showing how c1QQ = 0 now matches the nominal
NLO 4-top. This shows the good results from the AppRatio configs

While running the QuadFit for the EFT configs, a slight bug in the implementation of EFTRExFitter
was discovered. The program quit unexpectedly when it encountered an empty bin, which occured in some
of the RJ-variable Region plots. Abhishek Sharma implemented a fix to this bug using boolean masks.
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3.1.2 Higgs Oblique Difficulties

Although the Higgs Oblique samples were generated at LO, as with the nominal EFT default samples,
they were simulated separately in a different regime. This makes it difficult to compare the Ĥ rates with
either of the nominal tt̄tt̄ samples, as seen partly in Figure 4. Originally, there were no Ĥ = 0 samples
created to act as a nominal signal, however Rachel Lindley, also part of the greater 4-top analysis group, has
been working on the comparison of nominal signals and has created an equivalent Ĥ = 0 sample [10]. With
the newly created Higgs Oblique nominal, Rachel has been comparing the yields of different detector level
output variables with the EFT default nominal LO signal, as well as the NLO SM nominal signal. From
her slides, it can be seen that there are slight differences in the three nominal yields, of which the cause is
uncertain. She speculates that it might be due to a difference in scale setup. The differences in nominal rates
raises questions about whether the analysis is correct in its present form, in comparing the Higgs Oblique
samples to the EFT default nominal samples or the NLO nominal samples. This also means that the shape
re-normalization done with the previously discussed Divide By is inaccurate, as it divides by the shape of
the EFT def. LO nominal. Comparison of the Higgs Oblique parameters with the NLO nominal signal
can be seen in Figure 7, comparing the DivideBy renormalization technique and no renormalization. The
renormalized plot unexpectedly shows much higher Ĥ levels, for an unknown reason. Perhaps this indicates
that the AppRatio renormalization config technique is not suited to Ĥ in its present form.

(a) No AppRatio renormalization (b) With AppRatio renormalization

Figure 7: Ĥ compared to NLO tt̄tt̄ nominal, in the RJ variable region max∆RCM
lb

As of right now, there is no Ĥ = 0 sample able to be used by the rest of the analysis team, and so there is
some confusion as to how to go about analysing the Higgs Oblique Samples. To compound the confusion, the
QuadFits created by EFTRExFitter for the Ĥ samples are sporadic and random in their bin-by-bin fitting,
as seen in Figure 8.

Figure 8: An Example of a the sporadic QuadFit bin-by-bin fitting, for the EFT parameter Ĥ in the RJ
region ∆ϕV T combined. The badness of the fit can be seen in the inversion in concavity between adjacent
bins.
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To look into this myself, I made a few plots comparing the NLO nominal tt̄tt̄, LO EFT default nominal
tt̄tt̄, and Higgs Obliques Ĥ = 0.05, 0.08, 0.12, 0.17 modified tt̄tt̄ signal for some ‘input’ detector level variables
(instead of the RJ-created variables used earlier) to assess which nominal is best suited to the Higgs Oblique
and to explore the differences in the LO & NLO nominal yields at the detector level. Some of these plots
can be seen in Appendix C.

3.2 Working with mva-trainer

As I started working with mva-trainer later in my work term, I did not have the chance to produce
much analysis with the program. Working with Albert Kong, mva-trainer was set up, all the correct
packages were installed (of which there were many), and some test configuration files were run to explore
the functionality of the program.

I was able to run the conversion script on the analysis samples, which converts the file type from .root

to .hdf5 files, which can more easily be handled by the python libraries which mva-trainer is built upon.
Unfortunately, there was not much progress beyond this as the GNN implementation of mva-trainer

is still under development. I familiarized with the program but was unable to train on any data, or fully
explore the GNN utilities of mva-trainer. Hopefully the GNN sector of this program will be ready for use
soon, but it was not available by the time my work term ended.

4 Results / Discussion

4.1 Findings & Results

Many yield and shape comparison plots were created in the RJ-variable regions, as well as in some Signal
Region(s), Control Regions, and Validation Regions, seen in Appendix B. After some minimal systematics
were introduced, Negative Log-Likelihood plots were also created, quantifying the confidence levels of the
existence of the analyzed EFT parameters, at different coefficients. These are seen in Appendix A. Compar-
isons of the different nominal tt̄tt̄ signal samples (Leading Order and Next to Leading Order) and the Ĥ
varied samples, for the input variables, were plotted in Appendix C.

Although my research was mostly of an exploratory nature, it was found that the RJ-varibale regions
containing information on top quark momentum had the largest shape differences and are therefore the
best (of the variables tested) at distinguishing EFT effects. This is seen in the topP combined variables in
Appendix B.4, and in the high values of the separation quantification described in Equation (4).

It can also be seen, in Appendix B.1, that the new BDT signal regions did not improve shape distinction
much from the original SMBDT, but still had some minimal improvement.

In Appendix A, the Negative Log-Likelihood (NLL) plots show different Confidence Levels for the same
levels of different EFT parameters (notice the different scales on the x-axis). The NLL value represents the
number of sigma deviations from the measured value. A Confidence Level (CL) percentage can be assigned
to the NLL value. A NLL of 1 corresponds to a CL of 68%, and a NLL of 2 corresponds to a CL of 95%.
Different values of each parameter, at 95% confidence level can be seen in Appendix A.

From Appendix C, it can be seen that the shape of the Ĥ samples’ distribution seems to match that of
the nominal tt̄tt̄ at Next to Leading Order (NLO), rather than Leading Order (LO), even though the Ĥ
samples were supposedly produced at LO.

4.2 Future Directions / Discussion

It is interesting to see that the introduction of EFT parameters seems to most greatly affect the momen-
tum of the top quarks, skewing them to higher values. A potential reason for this phenomenon is the fact
that EFT parameters play a larger role at higher energies, and so it would make sense that when introduced,
they would cause more higher energy interactions as they are contributing to the physics of the collision.
The fact that the NLL plots are so different from parameter to parameter, is an interesting characterization
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of the effects of each parameter. The fact that they are so disparate is unusual and may point to some
missing systematics, unaccounted-for effects in the simulations, or even actual physical phenomena, perhaps
caused by the correlation of parameters. Also, in Appendix C, the fact that the Ĥ seem to better match the
NLO nominal samples raises the question of which nominal sample to use with Ĥ, and if there may be errors
unaccounted for in the Ĥ samples, or if perhaps there are physical phenomena present in the activation of
the Ĥ parameter which are not being accounted for.

For future continuation of analyses in this realm, many different possible paths could be continued and
studied. One could start combining the RJ variables to create new variables, perhaps finding a combination
that even better separates EFT effects than the topP variables. A combination of the momentum variables,
and kinematic spatial variables might perform better than either alone. Working toward a larger shape
difference between the nominal and EFT samples is useful because it provides a concrete difference on which
a Machine Learning algorithm can be trained to distinguish. As BDTs tend to wash out minimal shape
differences, GNNs will most likely perform better at this distinction. Future continuation of this analysis
would provide concrete evidence for this. Continuing with GNNs, the algorithm could hopefully be trained
to predict the presence different Wilson coefficient levels, as a regression algorithm, rather than simply
classification of EFT or no-EFT.

The anomalies with the Higgs samples could be explored more, by creating a Ĥ = 0 nominal sample, as
well as samples with higher statistics. Further exploration could also include the addition of more systematics
and the activation of many parameters at once, which would help quantify the correlation of the EFT
parameters.
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A Appendix: Negative Log-Likelihood Plots

(a) NLL Plot for c1QQ

(b) Uncertainty on c1QQ presence in data

Figure 9: Fit Results for c1QQ
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(a) NLL Plot for c1Qt

(b) Uncertainty on c1Qt presence in data

Figure 10: Fit Results for c1Qt

(a) NLL Plot for c8Qt

(b) Uncertainty on c8Qt presence in data

Figure 11: Fit Results for c8Qt
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(a) NLL Plot for c1tt

(b) Uncertainty on c1tt presence in data

Figure 12: Fit Results for c1tt

B Appendix: Rate and Shape Comparison Plots

B.1 Signal Region(s)

The original Signal Region, SMBDT, was slightly modified to see if better shape difference could be
achieved. The BDT was run again, resulting in the new signal regions BDT RJ and BDT RJ2

SMBDT

(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 13: Yield / Rate comparisons in the SMBDT Signal Region, for all the tested parameters
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(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 14: Shape comparisons in the SMBDT Signal Region, for all the tested parameters

BDT RJ

(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 15: Yield / Rate comparisons in the BDT RJ Signal Region, for all the tested parameters
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(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 16: Shape comparisons in the BDT RJ Signal Region, for all the tested parameters

BDT RJ2

(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 17: Yield / Rate comparisons in the BDT RJ2 Signal Region, for all the tested parameters
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(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 18: Shape comparisons in the BDT RJ2 Signal Region, for all the tested parameters

B.2 Control Regions

Note: to reduce the size of the appendix, some figures can be found online at the following link:
https://bit.ly/3qxsO5D

The Control Regions, adjacent yet orthogonal to the signal region, are used in the fitting process, as
explained in section 2.1. Here are a couple examples of the effect of the EFT parameters in the CRs.

· CRLowBDT: This is the Background-Like phase space selection from the trained BDT, putting an
extra constraint on the fitting.

· CRttW2l new: This is the region isolating the ttW production with 2 leptons in the final state, a
major background for tt̄tt̄ production.

B.3 Verification Regions

I have only included one example of a “VR” verification region here because the RJ Reconstructed
variable regions, seen below, we’re also used as verification regions. Verification Regions do not affect the
fitting process.

· VRttZ3l: This region represents the part of the phase space corresponding to the ttZ to 3l background.

B.4 Recursive Jigsaw Regions

These are a few examples of the RJR regions. The variables represented are described in their respective
section.

HT angle combined

The variable min HT angle describes the minimum angle ∆ϕ between any two top quark vectors in the
CM frame.

R HTN HN - HCM
n,1

This variable represents the transverse sum of object momenta divided by the full sum of the object
momenta.
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dphiVT - ∆ϕV T

This variable represents the angle, ∆ϕ between the first top quark candidate and the rest of the visible
products in the CM frame

dphilCM - ∆ϕCM
l

This variable represents the ∆ϕ between two leptons in the center-of-mass frame

dRjbCM - ∆RCM
jb

This variable represents the ∆R between a jet and b-jet in the center-of-mass frame. Both min∆RCM
jb

and max∆RCM
jb are shown

dRjjCM - ∆RCM
jj

This variable represents the ∆R between two jets in the center-of-mass frame. Both min∆RCM
jj and

max∆RCM
jj are shown

dRlbCM - ∆RCM
lb

This variable represents the ∆R between a lepton and a b-jet in the center-of-mass frame. Both
min∆RCM

lb and max∆RCM
lb are shown.

topP - pCM
t

This variable represents the momentum of the top quarks in the center-of-mass frame. Here minpt,
maxpt, and Σpt are shown. These variable had the highest shape difference out of any other variables.

(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 19: Yield / Rate comparisons for the variable minpt
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(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 20: Shape comparisons for the variable minpt, showing the high values for the shape difference test.
The y-axis is sometimes log-scaled.

(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 21: Yield / Rate comparisons for the variable maxpt
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(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 22: Shape comparisons for the variable maxpt, showing the high values for the shape difference test.
The y-axis is sometimes log-scaled.

(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 23: Yield / Rate comparisons for the variable Σpt. This region should be rebinned for clearer analysis
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(a) c1QQ (b) c1Q1

(c) c8Qt (d) c1tt (e) Ĥ

Figure 24: Shape comparisons for the variable Σpt, showing the high values for the shape difference test.
The y-axis is sometimes log-scaled.

22



C Input Variables for Ĥ and Nominal tt̄tt̄ Comparison

Note: to reduce the size of the appendix, some figures can be found online at the following link:
https://bit.ly/3qxsO5D

These are the comparison plots between the LO nominal, NLO nominal, and Ĥ modified signal samples,
for the detector level input variables.

23


