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Determining all measurable properties of the Higgs boson is one the ways in which we

can further test the Standard Model and evaluate additional theories. Specifically, precise

measurements of the Higgs coupling to second-generation fermions is the next crucial step

and can be investigated via the dimuon Higgs decay channel. Here we present two methods

created to examine the dimuon Higgs decay when produced in association with a top-antitop

quark pair and differentiate this signal from background top-antitop pair production. The

first method involves the use of an algorithm which minimizes a chi-squared-like variable.

This showed some discrimination ability but was deemed insufficient for practical use. The

second method employs a machine-learning algorithm and displayed correct classification of

signal and background events 84 and 85 percent of the time, respectively. Future retraining

the neural network with more events and a greater variety of background decays may result

in accuracy rates capable of detecting signal events on ATLAS Run II and III data.

I. INTRODUCTION

In 2012, a novel particle with an approximate

mass of 125 GeV was discovered [1]. This parti-

cle, discovered by both ATLAS and CMS experi-

ments at CERN, has been shown consistent with

Standard Model (SM) predictions of the Higgs

boson [2, 3]. This Higgs boson describes how

Standard Model particles obtain their mass via

spontaneous symmetry breaking [4, 5]. In par-

ticular, the coupling of the Higgs field to all SM

particles (both fermions and bosons) results in

their respective masses [6]. Accurate measure-
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ments of these couplings allow for rigorous new

tests of the SM itself, in addition to probing ad-

ditional theories whereby multiple Higgs bosons

exist [7]. Specific couplings can be investigated

through measurements of Higgs production and

decay modes.

Since its discovery, the Higgs boson coupling

to third-generation fermions have been observed

and established consistent with SM predictions

[8–10]. However, couplings of this new scalar bo-

son to every particle are necessary for a robust

understanding. As such, this study explores a

method to enable investigations into the Higgs

coupling to muons, a second-generation fermion.
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The muon is the ideal second-generation fermion

on account of the many difficulties associated

with detecting strange/charm quarks or the

muon neutrino.

Here, we outline our investigation into a spe-

cific Higgs production and decay: tt̄H, H →

µµ. We present a method of identifying events

whereby a Higgs boson decays to µ+µ−. The

dimuon pair offers a distinct signature in the

ATLAS detector: two oppositely charged, iso-

lated muons emerging in opposite transverse di-

rections. The muon calorimeters and spectrom-

eters in ATLAS provide excellent readouts for

such signals. However, while this decay presents

a clear signature, it is extremely rare. Of the

possible hypothesized Higgs decays, the branch-

ing ratio of Higgs to µµ is one the smallest, of

order 10−4 [11]. It thus poses a significant chal-

lenge and requires sophisticated detection meth-

ods.

A. tt̄H Production and Decay

All Higgs production modes should be con-

sidered to ensure the detection of all possible

H → µµ events. Here, we focus on the produc-

tion of a Higgs in association with a top-quark

pair, namely, tt̄H. While this production mecha-

nism is also rare, it once again provides a distinct

signature.

tt̄H involves a top-antitop quark pair pro-

duced at the same vertex with a Higgs boson,

as shown in Figure 1. Due to their incredibly

short lifetime, top quarks cannot be detected di-

rectly by ATLAS. Instead, decay products pro-

vide the distinct signature. Top quarks decay via

t→ bW over 99% of the time. This decay creates

reliable jets that can be classified as having orig-

inated from b quarks, dubbed bjets. A wealth

of literature is dedicated to the algorithms in-

volved in classifying bjets [12–14]. It will not

be reviewed here, only to say that the longer

lifetime of b quarks creates a secondary vertex

upon hadronization, thus allowing for identifica-

tion. Thus, in conjunction with a dimuon signal,

the tt̄H decay includes at least two b-tagged jets.

There are two main decay modes for the W

boson, resulting in 3 possible channels for the full

tt̄H mode due to the combinatorics of the top

quark pair. These three possibilities are shown

in Figure 1. tt̄H decay modes are labelled by

the products of the W boson, which can de-

cay either leptonically, W → lν, or hadroni-

cally, W → qq. If both tops decay leptonically

or hadronically, the tt̄H decay is said to be all-

leptonic or all-hadronic, respectively. Further-

more, if the top quark pair decay via different

channels, the whole tt̄H decay is said to be semi-

leptonic. For any of these three decays, the sheer

number of decay products constitutes a unique

signal. The decay products are expected to ex-

hibit high energies due to their originating from

massive top quarks, adding an extra uniqueness

to this decay.

Here, we investigate methods to identify any

of these three tt̄H decay modes (where H →
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(a) Fully leptonic decay (b) Semi-leptonic decay (c) Fully hadronic decay

Figure 1: Feynman diagrams describing the signal decays included in the present analysis. All decays

include a Higgs produced in association with a top quark pair, followed by a dimuon decay of the Higgs

boson, tt̄H, H → µµ.

µµ), with specific emphasis on the fully-hadronic

decay as that is the most probable. The back-

ground source considered here is the common

production of top-quark pairs, tt̄. The decay

modes of tt̄ are the same as those for tt̄H, with-

out the dimuon signal from the Higgs. Thus, tt̄

decays can also be categorized as fully leptonic,

fully hadronic, semi-leptonic. While the dimuon

signal reconstructing to the Higgs mass is the

starkest difference between tt̄H and tt̄, we ex-

pect further distinctions in the boosted nature

of tt̄H products.

II. DATASETS AND DECAYS

Full-simulation Monte Carlo (MC) events

were used as data for signal and background in

all analyses presented herein. MC data is such

that it resembles ATLAS detector output, thus

allowing for the same analysis to be run on sim-

ulated and real datasets without any significant

changes. Signal data produced contained all

three possible tt̄H, H → µµ decays listed above

but were not labelled as such. MC data used for

background only contained fully leptonic tt̄ de-

cays. One of the reasons for this choice was the

similarity in signature as the final leptons pro-

duced from the W decay could be muons and

thus mimic signal data more closely.

Requirements regarding event selection were

identical for both signal and background. The

cutoffs outlined in Table I were implemented to

select for the expected highly energetic products.

Events that did not satisfy all criteria were ex-



4

cluded from the analysis. The final dataset in-

cluded approximately 197 000 signal and 404 000

background events.

III. METHOD ONE: CHI-LIKE

VARIABLE

The first method to differentiate signal from

background reconstructed W and top particles

using a chi-like variable. This method was moti-

vated by Husemann 2017[15] and is reproduced

here in Equation 1.

χ2 =
(WSM −Wrecon)2

σ2W
(1)

The equation above seeks to minimize a chi-like

variable which is calculated by taking the dif-

ference of the reconstructed invariant mass of a

W, Wreco from its SM prediction, WSM . This

value is normalized by the predicted SM natural

width of the W mass, σW . Here, this formula is

extended to include two W bosons and two top

quarks, as described by Equation 2, to calculate

a chi-like variable for the entire tt̄H decay.

Table I: Minimum requirements for event inclusion.

Min. count represents the minimum number of

objects which must pass the threshold cutoff, where

pT is transverse momentum, WP is working point,

and the same pT cutoff applies for both btagged and

non-btagged jets.

Muons Non-btagged Jets btagged Jets

Min. count 2 4 2

Cutoff 30 pT 25 pT 85 WP

χ2 =
(WSM,1 −Wrecon,1)

2

σ2W
+

(WSM,2 −Wrecon,1)
2

σ2W

+
(tSM,1 − trecon,1)2

σ2t
+

(tSM,2 − trecon,1)2

σ2t

(2)

As mentioned previously and in Table I, all

events contained two oppositely charged muons,

at least two b-tagged jets, and at least four

non-btagged jets, each satisfying their respective

thresholds listed. For every event, a W boson

was reconstructed from the kinematics of a pair

of non-btagged jets. This W boson was then

paired with a bjet to reconstruct a top quark.

This was performed a second time with a dif-

ferent combination of jets for a total reconstruc-

tion of two unique W bosons and two unique

tops. The combination (out of all possible for

any given event) of four non-btagged jets and

two bjets which minimized Equation 2 was se-

lected.

Equation 2 initially utilized standard model

predictions for W and top masses alongside their

respective natural widths. However, this was

changed to better reflect the data and detec-

tor resolution. Standard model values for the w

and top mass variables were preserved, while the

widths were approximated from the data. The

invariant mass distributions of top and W bosons

were plotted, and a Gaussian fit was applied to

the distributions’ core. The σ of the fit was then

used as the new W and top widths, respectively.

An example is shown in Figure 2, and the final
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Figure 2: Reconstructed invariant W boson mass

with the core distribution overlain with a Gaussian

fit. Sigma was used for chi-like variable computation

to more accurately reflect data resolution.

utilized numbers were 7.6 for W width and 17.3

for top width.

With these values for WSM , tSM , σ, the al-

gorithm to minimize the chi-like variable was

implemented on both signal and background to

identify decay products.

This method was then evaluated by exam-

ining the invariant mass of the dimuon pair.

As expected, the dimuon invariant mass dis-

tribution from signal events peaked sharply at

about 125 GeV. In contrast, that of the back-

ground data peaked at 100 GeV with a much

wider observed distribution. Reconstructed W

and top mass distributions for signal and back-

ground also differed. This is suspected of be-

ing influenced by the reconstruction algorithm’s

assumption of fully hadronic decays while the

background data contained only leptonic decays.

The differences in all distributions, however, had

significant overlaps and thus were not desirable.

The invariant mass distributions (dimuon, re-

constructed W and top) were further inspected

by examining only those events with a chi-like

value less than some arbitrary cutoff. When

these events were viewed closely, it was evident

that the reconstruction algorithm would falsely

reconstruct invariant masses. Attempts were

made to optimize the algorithm by varying the

value of this cutoff, but the fundamental prob-

lem remained. As such, an alternative approach

was necessary to better differentiate signal and

background events.

IV. METHOD TWO: MACHINE

LEARNING

A deep learning feed-forward multi-layer per-

ceptron utilizing back-propagation was con-

structed to classify signal and background

events. The neural net consisted of 61 input

variables, three hidden layers, and two output

nodes.

Input variables included all kinematic vari-

ables for btagged and non-btagged jets: trans-

verse momentum, pT , pseudorapidity, η, az-

imuthal angle φ, and energy, E. Additionally,

the working point of the btag algorithm for

all btagged jets was included, as well as event

missing transverse momentum (energy and az-

imuthal angle), MET . The eight most energetic

non-btagged jets and top four btagged jets which

satisfy requirements outlined in Table I were in-

cluded. If a given event contained less than the

maximum number of included jets but satisfied

the minimum, the excess variables were set to
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zero. This was done to ensure a uniform input

dimensionality for all events. Additional vari-

ables included the transverse momentum and

pseudorapidity of the most energetic µ±. Muon

variables φ and E were purposely excluded to

prevent the algorithm from reconstructing the

dimuon invariant mass and potentially classify-

ing signal from background by identifying the

Higgs boson. Furthermore, having the net blind

to this invariant mass allows examination of the

dimuon invariant mass distribution after classi-

fication as a measure of network performance.

The chi-like variable from the previous sec-

tion was also included as a potential aid to the

neural net. Similarly, the δφ and δR of the two

reconstructed top quarks to increase network ef-

ficiency and accuracy, where δφ is the difference

in azimuthal angle of the two objects, and δR

defined by Equation 3.

∆R =
√

∆η2 + ∆φ2 (3)

Key neural net properties are included in Ta-

ble II. A train-test-split was performed whereby

70% of the input data was used for training the

network, while the other 30% was used to test

(evaluate) the net’s performance on novel data.

The training sample was further divided wherein

80% of the training data was used for training

during epochs and the remainder used for cross-

validation.

Due to the abundance of background data,

class weights were applied to signal vs back-

ground data to prevent biasing the network

to background data. This was achieved using

the balanced class weight method where class

weights are given by

total events

(number of classes)(number of events in class i)

Standard features were additionally imple-

mented to avoid overtraining. These include

monitoring loss with early stopping and includ-

ing dropout in the first two hidden layers. Here

we present the optimal configuration which min-

imized validation loss after hyperparameter tun-

ing. The network presented here was also com-

pared with network configurations with one to

eight hidden layers, which had been similarly hy-

pertuned.

A softmax activation function was used for

the two output nodes of the network. Softmax

was chosen for its interpretation as a probabil-

ity that a given event is from each class (where

the probability of each class must sum to unity).

Since this network was employed as a binary

classifier, only the output of the signal-like class

can be considered, where closer to 1 is more

signal-like and 0 is background-like. All further

model evaluation was performed using these out-

puts derived from the previously mentioned test-

ing dataset.

A. Neural Network Evaluation

The algorithm’s classification of all test data

can be seen in Figure 3. Background and signal

data are clustered around 0 and 1, respectively.
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Table II: Neural network properties. Additional parameters include Learning rate: 1e-3, Optimizer: Adam,

Loss: Sparse Categorical Cross-Entropy.

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output

Neurons 300 300 300 2

Dropout 0.2 0.2 0 N/A

Activation Functions relu relu relu softmax

The clear differentiation of the network’s output

is an early suggestion of good performance.

Figure 3: Network output distribution that a given

event is signal-like, with signal in red and

background as blue. Normalized frequency was

performed per class, and is the fraction of events per

class at each probability (bin).

Various metrics were utilized to evaluate the

performance of the classifier. In Table III we

report a confusion matrix where events were

considered to be classified as signal-like if they

had an output probability greater than 0.5. All

other events were considered to be classified as

background-like. The table is normalized by

row, and we see fair classification of true posi-

Predicted

True Signal Background

Signal 0.85 (TP) 0.16 (FN)

Background 0.16 (FP) 0.84 (TN)

Table III: Confusion matrix displaying network

classification (predicted) compared to true values,

normalized by row where TP, TN, FP, FN are true

positive, true negative, false positive, false negative

respectively.

tives and negatives at 0.85 and 0.84 respectively.

We can define recall and precision from values

in the confusion matrix, where TP, TN, FP, FN

are true positives, true negatives, false positives,

and false negatives, respectively.

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Recall and precision can be further combined

to define the f-score of the network, a standard

metric used to evaluate classification algorithms.

Equation 4 presents the definition and network’s

f-score.
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f-score = 2
Precision * Recall

Precision + Recall
= 0.779 (4)

V. CHARACTERIZING SIGNAL AND

BACKGROUND DISTRIBUTIONS

In section IV A events were classified by the

net as signal-like or background-like if the prob-

ability of signal-like classification was above or

below 0.5. Here, we investigate adjusting this

cutoff value and the resulting changes in the

dimuon invariant mass distribution. Figure 4a

is an example distribution plot for all events

that were classified by the network as having a

probability greater than 0.75 of being signal-like.

We see the distribution dominated by correctly-

classified signal events, which sharply peak at

125 GeV as expected. 4% of all background

events and 62% of all signal events were clas-

sified above this cutoff, resulting in a 16:1 signal

to background ratio.

Figure 4b displays all events excluded from

Figure 4a(which classified probabilities less than

0.75). Figure 4b clearly shows the background

events decaying with increasing mass, with some

incorrectly-classified signal events clustering and

creating a peak at 125 GeV. We can further

compute the signal to background ratio by the

change in respective events classified. Of all

input events, signal was outnumbered to back-

ground by approximately 1:2. Implementing a

0.75 cutoff resulted in a ratio of 6:1. These re-

sults are summarized in Table IVfor a range of

cutoffs from 0 to 0.9.

Additionally, these values are provided nor-

malized to the total amount in their class. For

example, 100% of background events and 100%

of signal events are classified above a threshold

of 0. However, for a threshold of 0.75, only 6%

of the total background events and 65% of the

signal events pass. These are given both as frac-

tions and ratios in the table, where ratios are

provided for easier interpretation.

VI. CONCLUSIONS

Here, we presented two methods to discrimi-

nate signal dimuon Higgs decay produced in as-

sociation with a top-quark pair, tt̄H, H → µµ,

from a background of top quark pair leptonic de-

cays, tt̄ → llνν. The first method involved cre-

ating an algorithm utilizing a chi-like variable

to select objects to reconstruct essential decay

products. This method was shown to be inef-

fective at discriminating background from sig-

nal. We present the creation of a neural net-

work as a second method where critical outputs

from the first method were used as network in-

puts. The network correctly identified signal and

background events 82 and 83 percent of the time,

respectively. The model is primarily limited by

small datasets where an increase in event counts

for both signal and background may result in

model improvements. With a greater sample

size, model complexity can increase without the

risk of overtraining. Additional variables such
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as high-energy leptons beyond the dimuon pair

may also prove helpful. Feature importance of

the networks where input variables are ranked

on their relative importance to the model should

also be performed. Like all metrics and anal-

yses on machine learning algorithms, caution

must be taken as feature importance is neural

net specific, and any configuration changes may

drastically change variable importance. Hyper-

parameter tuning should also be conducted for

any new model configuration. Future model im-

provements should also consider incorporating a

variety of new background sources. Key decays

to improve the model’s usefulness would include

all tt̄ decay modes, as well as tt̄Z.

Furthermore, classifying signal into specific

decay modes (training the network to classify an

event as fully leptonic, semi-leptonic, or fully-

hadronic) could provide further insights into

branching ratios and decay modes. Finally, this

analysis hopes to eventually merge with all oth-

ers investigating the Higgs dimuon decay with

the hopes of gaining more insight into the stan-

dard model and potentially beyond.
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(a) Events classified with probability greater than 0.75 (b) Events classified with probability less than 0.75

Figure 4: All events classified by the neural network as having a probability (a) greater than or (b) less

than 0.75 of being signal-like. Event true classification is shown in red (signal) and blue (background).

Threshold

0 0.25 0.5 0.75 0.8 0.9

S:B Events 1:2 1.5:1 2.7:1 5.6:1 7:1 13:1

Norm. S:B Events 1:1 0.94:0.31 0.84:0.15 0.65:0.06 0.59:0.04 0.41:0.02

Norm. S:B Events ratio 1:1 3:1 5.6:1 10.8:1 14.8:1 20.5:1

Table IV: Signal to Background ratios for various probability cutoffs. S:B Events indicates relative amount

of events where initial (threshold cutoff of 0) there are twice as many background events. Norm. S:B

Events shows a normalization of events per threshold by class, where all signal events are classified above a

threshold of 0, but only 41% of signal evens are classified above 0.9. Norm. S:B Events ratio converts

Norm. S:B Events normalized further to the fraction of background events included, for easier

interpretation.
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