
Introduction to Particle Physics Methods - IPP Summer Student Report

Patrick (Zhi Gu) Li1, ∗

1Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2G7

The main objective of this summer project was to familiarize myself with key methods used in the
particle physics research community and obtain some hands-on experience with the procedures itself.
In summary, the summer was largely an introduction to the object-orientated program ROOT, of
which the purpose was originally intended for particle physics data analysis. By using ROOT, I
was able to implement many advanced plotting and data sorting algorithms for a given problem.
Additionally, I worked under a Linux environment and went through the typical procedures of
building programs – a practice that yields useful skills since the use of various Linux operating
systems is very wide spread in the field of science. Over the summer, I was required to invoke my
problem-solving skills on a series on subsequent tasks that I was assigned for, where I was given the
freedom to accomplish them by any means necessary.

I. BUILDING GODDESS - A GEANT4
EXTENSION FOR MODELING OF OPTICAL

DETECTOR COMPONENTS

A. Introduction

The Geant4 Objects for Detailed Detectors with Scin-
tillators and SiPMs, or GODDeSS for short, is an exten-
sion of Geant4 which allows for easy modeling of optical
detector components. Due to the extensiveness and flex-
ibility of Geant4, specifically its geometric parameters,
creating a simulation that models physical processes and
sensitive detector components would require tedious cal-
culations from the user’s end. With increase in complex-
ity of the simulation space, these calculations can become
rather laborious and is one of the main issues that GOD-
DeSS attempts to solve. GODDeSS essentially limits the
complexity and reduces the flexibility of the Geant4 pro-
gram to specialize in simulating optical detector compo-
nents, thus minimizing the required efforts, reduces user
errors, and lowering the necessary skill levels required for
a Geant4 simulation. [1]

FIG. 1: Two examples of fairly straightforward optical com-
ponents setup that would be considered ”complex” within
the Geant4 simulation space, however under the framework
of GODDeSS, this simulation can be setup with roughly 8
lines of code. [1]

∗Electronic address: zhigu@ualberta.ca

Our objective of this task is to build and compile the
GODDeSS extension program and its dependant pro-
grams. Our original plan was to study and simulate the
the scintillator tile detectors for muon detection that are
proposed to be installed over ATLAS. Although this plan
fell through, the notes I kept from my successful attempt
at building GODDeSS still holds merit as this informa-
tion is fairly scarce with minimal online documentations
to provide any guidance.

B. Building Process

The official GODDeSS repository and its installation
instructions is publicly available, however the provided
instructions can be rather vague and easily misinter-
preted by someone who is not technologically literate [2].

With no explicit requirement of a certain operating
system, I originally attempted to install GODDeSS on
Windows 10. While all the dependencies installed flaw-
lessly, the GODDeSS package ran into an unsolvable
error between Visual Studio 2019’s C++ Linker and
Boost. Following many failed attempts at solving this
issue, I resorted to using a distribution of Linux in-
stead, which is what ultimately worked. The GODDeSS
package was built successfully with Ubuntu 16.04.6 LTS
with gcc 5.4.0, and it should work with most versions of
Ubuntu and even most Linux distributions with gcc 5.4.0
or higher. Ubuntu and gcc versions can be verified with
the following commands:

$ lsb_release -a
$ gcc --version

The prerequisite programs for GODDeSS include:
Geant4, Boost version 1.59, CMake, make, and zlib, and
while it is not explicitly stated, a version of OpenGL and
X11 must installed. Installing QT is also highly recom-
mended.

Prior to installing Geant4, it is recommended to first
installing OpenGL, X11 and QT since we wish to build
GEANT4 with OpenGL, X11 and QT support. Ad-
ditionally, a version of make and CMake must also be



2

present during the installing of Geant4. I used CMake
version 3.17.3 which was not obtained from apt-get
(since that version is too old to be used), but from
CMake’s official repository. The installation instructions
can be publicly found at [3] (Note: make must be in-
stalled beforehand using apt-get). The instructions pro-
vided for CMake is rather straightforward, and I found
zero ambiguities while following it.

While GODDeSS supports many versions of Geant4, I
found that the combination of Geant4 version 10.4 Patch
4 with GODDeSS version 4.3 worked successfully. All
previous versions and releases of Geant4 can be found
publicly at [4], and the installation instructions at [5].
The installation instructions are originally written for
Geant4 version 10.3.1, but I found that it worked flaw-
lessly with our version of Geant4 10.4.4. The installation
instructions are well written so I will not be going into
too much detail, except for the fact that when you reach
the build configuration stage, it is important to turn on
the flags: install data, QT interface, and X11 OpenGL
drivers. This can be done at the build configuration stage
with the following commands:

$ cmake -DGEANT4_INSTALL_DATA=ON .
$ cmake -DGEANT4_USE_OPENGL_X11=ON .
$ cmake -DGEANT4_USE_QT=ON .

Keep in mind that, if one wishes to change the build
configurations of Geant4 after the program have already
been built, one can easily do so by changing one’s termi-
nal directory to the Geant4 build folder and execute build
configuration commands similar to those listed above.
After one has set their desired build configurations, sim-
ply execute (Note that sometimes with ”$ make install”,
one must have ”sudo” in front to grant administrator
privileges):

$ make -j
$ make install

After, one have completed the installation steps, one
can test if Geant4 is functioning properly using Exam-
pleB1 shown in the instructions [5]. One should see a
pop-up visual window with multiple objects in the simu-
lation space. If this window does not pop up, then it is
highly possible that OpenGL X11 has not been config-
ured correctly. Also if one finds that the only way to pan
the view is through terminal commands and not through
a mouse interface, then QT4 has not been configured cor-
rectly.

Our next order of operations is to install Boost. As
far as I know, GODDeSS does require Boost libraries to
be built, since it utilizes the Boost.Regex library. The
GODDeSS wiki suggests Boost version 1.59, which can
be publicly found on Boost’s official repository [6]. Orig-
inally, I built Boost in a desktop folder, however I ran
into several errors with GODDeSS and CMake failing to
locate Boost, so instead, I build boost in the suggested
default location ”/usr/local”. However, one might run

into permission issues when building programs in this lo-
cation so when following the official instructions shown
from Boost’s website, one should make sure to change
the permissions of the folders when added to ”/usr/local”
such that they are writable. The build process for Boost
is well documented and there are no specific configuration
options needed for GODDeSS.

Lastly, with all the GODDeSS dependencies installed,
the final step is to build GODDeSS itself. Prior to down-
loading from the GODDeSS repository [2], make sure Git
Large File Storage is installed, otherwise, the repository
would not download properly onto the computer. The
instructions for installing the GODDeSS example simu-
lation found on the GODDeSS wiki worked mostly, but
a few problems arose on the last step when executing the
command: ”$ make -j install”. Depending on the admin-
istrative permissions, one might need to add ”sudo” be-
fore the make command. Additionally, an error (specif-
ically ”Error 2”) might occur following the execution of
the make command. Taking a look at the error messages
shows that the ”isnan” function or other functions are
undefined/declared. This issue is due to the difference in
versions of C++ between of which GODDeSS was writ-
ten in and the user’s version. This issue can be solved
easily by locating the line of code in each file where this
error occurred and add ”std::” before any functions that
can result in the declaration error. Additionally, another
possible error could occur when trying to run the example
simulation with default settings. Following the ”./Run-
Simulation” command, an error regarding a missing file
”TwinTilerReflector Aluminum” will pop up. This is be-
cause this file was not included in GODDeSS version 4.3,
however it is included in GODDeSS version 2.0 and one
can overcome this problem by copy and pasting it into
version 4.3. With everything done correctly, a simulation
window should open with a interactive GUI showing the
GODDeSS simulation space.

FIG. 2: The example GODDeSS simulation window with QT
interface



3

While it can seem trivial to many individuals famil-
iar with C++ and Linux systems, for someone who was
completely inexperienced with Linux and the process of
building applications, building GODDeSS successfully is
not an easy accomplishment. With very little documen-
tation on this process, using trial and error of different
combinations of GODDeSS versions, Geant4 versions, op-
erating systems, and build configurations can be very
frustrating and time consuming. However, with the aid
of these notes, I hope it could bring simplification to oth-
ers who are also trying to build GODDeSS.

II. ROOT TASKS

A. Preface

The data taken in experimental particle physics can
be overwhelming and abundant. With experiments like
ATLAS at the Large Hadron Collider (LHC) having the
potential to export terabytes of data or beyond within
just a few seconds, these scenarios establish the impor-
tance of data analysis and the enormous role it plays in
determining accurate results of these large scale exper-
iments. ROOT was originally designed for the purpose
of particle physics data analysis and in the follow sec-
tions, I will be completing various tasks to familiarize
myself with important particle physics data method and
ROOT, and implement various self-written algorithms to
accomplish the given tasks.

B. Histograms

The first task I was given was to construct simple two-
dimensional histograms. Histograms play an important
role in particle data analysis as it simplifies the data into
bins and visualizes the relevant physics. It graphically
summarizes the distribution and variation of broad data
sets which are fundamental to Monte Carlo (MC) meth-
ods, a popular approach used in particle physics.

In this task, I was given a set of detector data
files where my objective was to plot them on a two-
dimensional histogram and observe the locations where
particles triggered the detector. Additionally, knowing
the actual number of events, we can easily compute the
efficiency of these detectors. The code written by me to
complete this task can be found publicly at [7]. This algo-
rithm is rather simple, as the main purpose of this task
was an introduction to ROOT and its object-oriented
work flow.

The algorithm first scans a specific folder containing all
the comma-separated values (CSV) data files, and parses
them through ROOT. For each file, its data is stored into
vectors which are then used for further calculations and
plotting. Again, this particular example is not meant to
be hard, but a step towards familiarity in commonly used

basic operations. Essentially, the code plots a 2-D his-
togram with the information given by files and calculates
the detector’s efficiency. The efficiency is calculated by
counting the number of total entries found in our data
file and comparing it with the number of actual events
that took place. This process is then cycled until ROOT
has parsed through all the files inside the set folder. Fig-
ure 3 is an example of a plot that would be produced
by the macro. These example results are obtained from
a simulation of a Nuclear Track Detector (NTD) for a
monopole with mass 100 GeV, magnetic charge of 1 gD.

FIG. 3: 2D Histogram of the position of events for a Nuclear
Track Detector. The efficiency is calculated by comparing
events detected and the total events.

C. Mass Limits

In particle physics (and many other areas of physics),
when it comes to searching for something new or un-
known, we often set limits of various parameters based
on what we are able to observe. For the particle physics
case, in the attempts to predicting a new hypothetical
particle, we often set limits on its mass. For instance, if
we have not observed a certain predicted particle from
consistently repeated collider experiments, we can then
assume that the mass of the hypothetical particle that
would have been produced from these repeated collider
experiments is invalid, thus setting a limit on the parti-
cle’s mass. Setting limits on various parameters are of
an extreme importance to particle physicists as it allows
us to narrow down our search in terms of where to look
for these hypothetical particles.

This next task involves plotting and finding intersec-
tion points of the curves. Mass (in GeV) is plotted on the
X-axis, while the cross-section is on the Y-axis. There are
two curves on this plot, one being the cross-section limit
versus mass, and the other being the scaled cross-section
versus mass. The point where these two curves inter-
sect will determine the value of our mass limit. With our
given data, not every cross-section limit and scaled cross-



4

section pair will intersect on the graph, which means that
those pairs will provide no use for us. Our objective for
this task now becomes not only data plotting and calcu-
lations, but also data sorting.

This code will parse the CSV file data into ROOT and
make plot(s) with 3-6 curve pairs on each plot. The data
pairs with no intersections will not be plotted, and the
pairs that do have intersections will have their intersec-
tion point (mass limit) exported into another CSV file.
The majority of this code is dedicated to data sorting and
intersection finding. There are already other existing in-
tersection detection algorithms available, but I chose to
write my own as it is a good practice to test my problem
solving skills. This algorithm behaves as follows for any
sets of data for two curves:

1. Assuming both curves are one to one functions, sort
both curves by ascending x-values.

2. Starting from the first point of curve 1, using the
(i)-th and (i+1)-th point, interpolate a linear curve
using the point-slope formula. Do the same with
the (j)-th and (j+1)-th point on curve 2, also start-
ing from the first point.

3. Now with the linear equations of both curves, find
the x-value of where these linearly interpolated
curves intersect.

4. If this intersection x-value satisfy both conditions:

xi ≤ x < xi+1 and xj ≤ x < x <j+1 (1)

then it is counted as an intersection, and the cor-
responding y-value is calculated.

5. The x-y intersection value pair is then exported
into a CSV file for the corresponding cross-section
limit and scaled cross-section pair. If an intersec-
tion does not exist, this step is skipped.

6. Repeat step 1 to 5 using i = i+ 1 and once all the
points on curve 1 is cycled through, use j = j+1 for
curve 2 and reset i back to the first point of curve 1.
The intersection algorithm is complete once curve
2 has been cycled through.

Given our data structure, only one possible intersec-
tion can exist, so it could be quite beneficial to stop the
algorithm after the detection of one intersection, how-
ever, I left it in as a precautionary measure since the
accidental results of two intersections is obviously wrong
and easy to detect.

The intersection algorithm made in-house was the
highlight of this code, and the rest consists of tedious
data sorting procedures. The particle we are plotting for
has 3 parameters: spin, magnetic charge, and electrical
charge. The plotting algorithm must sort these curves
by ascending order and ascending priorities respectively
(e.g spin 0, magnetic charge 0, electrical charge 0 - spin 0,
magnetic charge 0, electric charge 1). Additionally, the

code also makes sure that the plots are not too cluttered
by keeping a good balance of 3-6 curve pairs per plot.
The code and its instructions can be found publicly at
[8]. Figure 4 is an example plot constructed using this
code, and the particle in question here is a ”Dyon”.

FIG. 4: Example of a mass limit plot. The dotted lines rep-
resent the data for cross-section limits, and the solid lines are
scaled cross-sections. The point where each respective curves
intersect is their mass limits.

D. Concave Hull

This next task I was handed with is less general in the
applications of particle physics. Regardless, it still tar-
gets my problem-solving abilities and allows me to be-
come more familiar with ROOT, which was the main
focus of these tasks. Our next task here uses data calcu-
lated from a theory regarding the light inflaton field and
the chaotic inflationary model [9]. While I do not fully
understand the theory, the objective was clear. The cal-
culated data consists of numerous scatter points, and the
objective was to sort the data in a way such that only a
smooth concave hull remained on the plot. If the theory
is true, this hull would represent 95% or more confidence
level that one is certain to see a particle in the detector.
The calculated data plotted on a log-log plot takes on
the geometric form shown in Figure 5.

I found this task to be rather challenging since all the
existing concave hull algorithms are quite complicated
with multiple hard-to-determine wrapping parameters.
Convex hulls, however are much simpler and can be ap-
plied to this scenario under the right conditions. Another
challenge arose due to the geometric structure of our data
set. It looks quite simple and easy to grasp when plotted
on a logarithmic axis, but linearly, the relative locations
of these points were difficult to determine. Due to these
unique constraints, I struggled to write a general algo-
rithm that would allow me to extrapolate concave hulls
for any given data set.

To tackle this problem, I divided up our data set into
three regions. On the left and right regions, before and
after the dip at 1 GeV, I applied a simple convex hull



5

FIG. 5: Data calculated from a theoretical model found in [9].
Our objective here is the plot a smooth concave hull derived
of this data set.

algorithm called the ”Gift Wrapping Algorithm”. This
algorithm essentially starts on the most left (right) and
upper point and scans in a (counter) clockwise manner.
The first point it detects after scanning some angle θ
now becomes the next pivoting point, and the scan now
starts at θ. This is done until we return back to the first
pivoting point, which by then θ should have spanned 2π.
The reason why this problem is split into three regions is
due to the fact that most, if not all convex hull algorithms
would skip right over the dip at 1 GeV. For the middle
region at 1 GeV, I had no choice but to manually sort
out the upper and lower points. In the end, I ended up
with with a nice hull where regions 1 and 3 was obtain
using Gift Wrapping, and the middle section was done
manually.

After obtaining the hull points, it was time to smooth
out the curve. Due to the abrupt ends on the bottom few
curves of Figure 5 (where the lines connect the last point
of each curve back to the top), they create very rough
edges on the contour which we do not want. First I took
the weighted average (since not all hull points are spaced
the same) of each point with their surrounding points.
I tried taking various numbers of points to average each
point with until I found a parameter that worked the
best; enough to blur the edges while not losing too much
information from the original data. Afterwards, I in-
terpolated the graph using ROOT’s own built-in Akima
Spline algorithm which creates some artificial bumps and
divots. This averaging and interpolating processes was
repeated a couple timed until it was smooth enough to
become acceptable. Lastly I repopulated the points by
finishing off with a linear interpolation of the entire hull.
Figure 6 shows the final results after multiple averaging
and interpolation cycles.

FIG. 6: The concave hull is obtained from the data calculated
in Figure 5. The hull was then made more smooth using
multiple cycles of averaging and interpolation until it became
acceptable. For the y-range, we were only interested up to a
value of 1e-6.

E. Calculating Detector Efficiency

In a typical LHC experiment (or any applicable experi-
ments), it is crucial to understand the efficiency of our de-
tectors. Not only does it illustrate the performance of our
detectors but also allows us to extrapolate what is hap-
pening in real life based on our detector readings. While
we did some surface level efficiency calculation in task
B: Histograms, this method will be a lot more involved.
This final task will be done in Python since I struggled
to make ROOT’s 3D visualization to work properly.

While most detector efficiencies are computed using
Monte Carlo (MC) methods, there are times where MC
simulations are not adequate. In some scenarios, the effi-
ciency is so low such that it would literally require more
than hundred billions of events or so just to estimate the
efficiency sufficiently. In our case, we will be calculating
our efficiency using analytical expressions and numerical
integration. The efficiency of our detector is given by the
analytical expression:

dε

dV
=

1

2πr2cτ

1

σ
√

2π
exp(−1

2
(
η − µ
σ

)2)

∫ 1

0

exp(
−r
cτβγ

)dβ

(2)
Where ε is the efficiency of the detector, and if

we assume the particle travels approximately at the
speed of light then cτ is the average distance the
particle would travel before decaying. This equation is
written using pseudorapidity as spatial coordinate, so
this means that r is the radius away from the beam
line, η is the pseudorapidity - an angle describing the
particle’s position relative to the beam axis, and φ is
the azimuthal angle which in our case is disregarded
due to azimuthal symmetry of the beam line. µ and σ
are the mean and variance of the normal distribution
respectively. The example detector we will be inte-
grating our efficiency over is given by the following 8



6

vertices in Cartesian coordinates: [3.27,3,-52.83],[3.27,-
2,-52.83],[4.798,3,-71.91],[4.798,-2,-71.91],[12.24,3,-
33.63],[12.24,-2,-33.63],[21.13,3,-37.4],[21.13,-2,-37.4].

FIG. 7: 3D visualization of the detector volume with respect
to the beam line.

Since our detector coordinates are given in Cartesian,
we must convert it to spherical and pseudorapidity using
the following relations:

r =
√
x2 + y2 + z2 (3)

θ = arccos(
z

r
) (4)

η = − ln (tan(
θ

2
)) (5)

Since we are integrating this volume numerically, we
can take on the approach of integrating in Cartesian and
converting it into spherical coordinates using the above
relationships as we integrate. Since we chose to integrate
in Cartesian, we must calculate our integration bounds
by finding the equations of planes responsible for each
side of the surface.

To find a plane, for example the plane defined by:
[12.24,3,33.63], [12.24, -2, 33.63], [3.27, 3, 52.83], [3.27,
-2, 52.83] we must find two vectors that lay on the plane.
Two obvious vectors that lay on the plane is:

~v1 =< 3.27−12.24, 3−3, 52.83−33.63 >=< −8.97, 0, 19.2 >
(6)

~v2 =< 12.24−12.24, 3−(−2), 33.63−33.63 >=< 0, 5, 0 >
(7)

Therefore a vector normal to the plane can be found
by:

~n = ~v1× ~v2 =< −96, 0,−44.85 > (8)

Thus our equation for this plane is simply:

96x+ 44.85z = 2683.3455 (9)

Later we will be integrating this surface with respect
to z so this equation in terms of x is (we will call this
x2):

x2 =
2683.3455− 44.85z

96
(10)

Similarly, we can find the equation of the planes for
the rest of the surfaces:

x3 =
6700.0655− 81.66z

172.55
(11)

x4 =
7.64z − 91.6632

95.4
(12)

y2 = 3 (13)

y1 = −2 (14)

Now with our planes calculated, we can compute the
efficiency of our detector by integrating Eq 2 over our
detector volume:

ε =

∫ 3

−2

∫ 37.4

33.63

∫ x1

x2

dε

dV
dxdzdy+∫ 3

−2

∫ 52.83

37.4

∫ x3

x2

dε

dV
dxdzdy+∫ 3

−2

∫ 71.91

52.83

∫ x3

x4

dε

dV
dxdzdy (15)

III. CONCLUSIONS

Over the course of this summer I was able to familiar-
ize myself with important practices used in experimental
particle physics. I was able to accomplish a series of tasks
that not only improved my problem solving skills but also
allowed me to become familiar with the object-oriented
program ROOT. ROOT is often seen as a standafrd pro-
gram in the particle physics community, and understand-
ing the program can be advantageous as it invites the op-
portunity for collaboration among other particle physics



7

members. Additionally, I was able to get some field expe-
rience in building programs under a Linux environment
- a task that is done regularly in the scientific field. In
conclusion, at the end of this summer, I learned multiple
numerical algorithms, became familiar with Linux and
the process of building programs, and above all, I got a
new programming language under my belt.

IV. ACKNOWLEDGEMENTS

First and foremost, I would like to thank Ameir Shaa
Bin Akber Ali, whom spend a great deal of time patiently

answering all my questions and assisting me in my tasks.
Additionally I would also like to extend my sincere grat-
itude to Dr. James Lewis Pinfold for supervising me on
this summer research project and for helping me through
all the application process of IPP Summer Student Fel-
lowship and NSERC USRA. I would also like to thank
Dr. Peggy White, Dr. Michael Roney, and Dr. Steven
Robertson for offering me a position in this 2020 IPP
fellowship program and facilitating the whole process.

[1] E. Dietz-Laursonn et al., GODDeSS: a Geant4 extension
for easy modelling of optical detector components, JINST
12 P04026 2017

[2] The GODDeSS GitHub Repository,
https://git.rwth-aachen.de/3pia/forge/goddess-package

[3] CMake Installation Instructions,
https://cmake.org/install/

[4] Geant4 download site,
https://geant4.web.cern.ch/support/download archive?page=1

[5] Instructions for installing Geant4.10.3.1,
https://indico.cern.ch/event/679723/contributions/2792554

/attachments/1559217/2453759/Geant4InstallationGuide.pdf
[6] Official Boost Repository,

https://www.boost.org/users/history/
[7] 2D Histogram Plotting Algorithm,

https://github.com/MustyHickory106/2D MMT NTD Histograms
[8] Mass Limit Plotting ALgorithm,

https://github.com/MustyHickory106/limit plots
[9] F. Bezrukov, D. Gorbunov, Light inflaton hunter’s guide.

J. High Energ. Phys. 2010, 10 (2010).


