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Abstract

Due to the HiLumi upgrade of the LHC, many of the systems in the ATLAS detector
are being upgraded to match the new luminosity target. Specifically, the muon system’s
Small Wheel (SW) has unsuitable performance for these upgrades. It is being replaced with
the New Small Wheel (NSW) loaded with small Thin Gap Detectors (sTGCs). A novel
technique which uses lower sensitivity regions in the detectors to detect the locations of
support structures inside the detectors is developed. These could be cross validated with
other analyses on the sTGCs at CERN. This report contains the documentation of the
software package used as well as validation, scalability, and results from analysis of a
QS3P8 quadruplet.
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Figure 1: The CERN accelerator complex that is connected up to the LHC.[1]

2 Introduction

2.1 The Large Hadron Collider

The European Organization for Nuclear Research (CERN) is one of the world’s largest
and most respected centres for scientific research. It houses a plethora of particle accel-
erators, that is, machines that fire particles at astounding speeds and smashing them into
stuff. The most notable of these accelerators is the Large Hadron Collider (LHC) which
fires protons at each other at near the speed of light. The LHC is the largest machine
ever built. Consisting of several nested rings that slowly bring the protons up to speed,
the largest of which having a circumference of 27 km, before smashing them together.
The purpose of such a machine is to probe the smallest objects we know of and test the
validity of the Standard Model (SM) of particle physics. These measurements occur at
four particle detectors in the ring - ATLAS, CMS, ALICE and LHCb [2].

The LHC was first brought online on September 10, 2008 and has since been a hub
of discoveries. Most notably, the LHC discovered the Higgs Boson on July 4, 2012
leading to the Nobel prize in Physics of 2013 to be awarded to Peter Higgs and François
Englert [3].

2.1.1 UPGRADES PEOPLE, UPGRADES!

The LHC is currently down for High Luminosity Upgrades (LHC HiLumi), and is
planned to restart its beams in early 2021. These upgrades will take place over the next
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Figure 2: A cross section of the ATLAS detector pointing out the location of the NSW
in the HiLumi upgrade. There are several humans for scale in the image. [5]

decade and boost the LHC’s luminosity from its initial 30fb−1 to an estimated 300fb−1.
An accelerator measures statistical quantities, meaning the performance of the detector
is not only proportional to the energy of the particles, but also how many collisions there
are [4].

Some of the detectors originally implemented at the collision sites were not designed
with such a high luminosity in mind. Thus many of them need to be replaced and
upgraded. This analysis pertains to one of such systems that need to be replaced in
entirely.

2.2 The ATLAS Detector

The ATLAS experiment is one of two-general purpose detectors on the LHC. It is de-
signed to precisely measure, identify, and recreate the tracks of particles created in a
collision in its center. It is comprised of 6 specialized systems organized in layers sur-
rounding the collision site. The volume of data produced by the detector is controlled
by an advanced triggering system that selects which data should be recorded. Because
of the HiLumi upgrades, many systems in ATLAS are in the process of being upgraded
and replaced. For this analysis in particular, we will be focusing on the muon detection
system’s Small Wheel being replaced by the New Small Wheel (see figure 2). A muon is
essentially a heavy electron that passes through the Small Wheel ionizing layers of gas
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in Thin Gas Chambers (TGCs). This ionization’s strength and location is then recorded
by several different electronics which can then reconstruct the trajectory that the muon
has taken through the wheel. These TGCs do not have good efficiencies at the high
luminosity of LHC HiLumi and thus must be replaced. The New Small Wheel (NSW)
is loaded with the new small-strip Thin Gas Chambers (sTGCs) which will be the focus
of this analysis.

2.3 The small-strip Thin Gas Chamber

A small-strip Thin Gas Chamber (sTGC) (see figure 3) is a trapezoidal thin gas volume
of n-pentane and CO2 in a ration of 55 : 45 that is held together by two large PCBs.
Suspended in the gas volume are small wires that represent the x-axis of the unit’s co-
ordinate system. There wires are held at 2800 V relative to the PCBs. This creates
an powerful electric field inside the gas chamber and allows electrons that are ionized
by muons in the gas to drift and ionize more particles causing an avalanche of ioniza-
tion. This avalanche ultimately ends when the electrons reach one of the wires and are
recorded as a small current pulse on that wire. One of the PCBs enclosing the volume
has large copper pads on it’s surface that are used for triggering when a muon passes
through. The other PCB is covered with a carbon coating that spreads the positive
charges generated from the ionization smoothly on its surface. This PCB also contains
copper strips that run perpendicular to the wires suspended in the gas gaps and represent
the y-axis of the detector’s coordinate system. These strips collect the positive charges
and record it as a current pulse.

These of course are missing the third axis required for reconstruction in full 3-D
space, and so the sTGCs are stacked four times on top of each other and glued together
to create what are called quadruplets (quads for short). The layer of the quad that the
signal is read on effectively provides the z-axis of the detector, thus resulting in a full
right handed coordinate system for each quadruplet. This z-axis actually runs parallel
to the z-axis of the ATLAS detector, and so its poorer resolution is not problematic
for track reconstruction. The x-axis has many wires in the gap at a fine resolution,
but is read in wire bundles and not individually for computational reasons. The y-axis
strips are all read individually and have a fine resolution, making them the finest axis in
the sTGC. This is because the y-axis resolution of these detectors actually corresponds
best to the resolution rapidity of the collision. The actual achievable resolution of the
detector is even higher than this since the carbon coating spreads the signal over many
strips, and can be best fit to for getting positions more precise than the strips resolution
would allow. [6]
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Figure 3: The general layout of an sTGC unit with the two PCBs on the top and bottom.
The wire bundles suspended in the gap represent the x-axis and the strips in the bottom
PCB represent the y-axis.[6]

2.4 Motivation

These structures on their own are wonderful, but they must operate in the context of the
ATLAS detector. For any of this resolution to make sense, the location of the detec-
tor coordinate system must be precisely known in the ATLAS coordinate system. On
top of this, any manufacturing imperfections that introduce offsets in position of any
of these detector readout channels more than 100µm would effect the tracking signifi-
cantly. Angular offsets between the PCB that holds the strips and the wires could cause
a skewed x-y axis plane, or angular offsets in between two quadruplets could lead to
rotations in the x-y plane as a function of z! All of these would be disasters for the
accuracy target that the sTGC units are built for. Many efforts across many countries
are all working to precisely document the performance and precise locations of each
component of quadruplets. This report focuses on the development a new method to
characterize some manufacturing imperfections in a quadruplet unit.

The wires in the gas gap are supported by small wire supports that run parallel to
the y-axis of the detector. These supports are glued to each PCB and then pinch the
wires in the middle, effectively creating a small low sensitivity zone. The supports are
7 mm in width, and in comparison to the 3.2 mm pitch of the strips, can cover about
two strips at once. Precisely knowing the location of these supports may actually reveal
some manufacturing imperfections in each quadruplet that can be cross-validated with
several other methods in development. The goal is to use data from validation and
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characterization runs of the detectors before they are sent to Switzerland from cosmic
rays to precisely locate these supports along the whole detector.

3 Analysis Outline

This method is designed to operates on simplified cosmic ray data provided by the
McGill sTGC lab. As inputs, it takes a root file with information of the strip ID, wire
ID, ADC counts, and quadruplet layer for each muon hit. It also has pad information but
this is unused in this analysis. The analysis is implemented in the wire-support position
analysis package and goes as follows

1. Select a support strut and zone off angled sections of the sTGC.

2. Divide the data near that support into N bins along the x-axis that are M strips
wide. Here N and M are left as free parameters.

3. Project all hits in that bin along the y-axis and best fit a function to the dip in data.
Alternatively the projection can happen on simulated data that is sampled from a
preset distribution.

4. Record the best fit locations and the effective width of the dip.

5. Examine these across an entire detector to determine patterns in the data.

This procedure is visualized in figure 4, but there are additional details not listed in
this primitive list. Notably, many of the different settings are not mentioned. Addition-
ally, one can best fit lines to the widths and locations determined to the effective slope
of the supports in the detector. One can also create cuts in the voltages that allow for
cutting off the noise to further clean and process the data.

3.1 Simulation

The primary use of the simulation built alongside the analysis was to quantify the max-
imum achievable statistical uncertainty on the best fit locations of the support and to
verify that the results of the analysis were accurate. To do this, the sampling distri-
bution was selected to be the inverted Gaussian, and it was fed inputs similar to what
the best fit values were reporting on real data. Next, this was sampled over to fill the
histograms created by the machinery of the analysis objects in a similar way to real
data. Finally, these histograms were passed to the rest of the analysis machinery as if
they were real data. Baked into the simulation is the ability to translate the distribution
according to a preset slope so as to test ability to determine angular offsets between
the support structure and axes of the detector. An extension of the simulation where
it runs on a strip by strip basis and then is recombined together to for the bins used in
analysis is also available but this smearing effect is negligible in real data so it is not
recommended.
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Figure 4: A visualization of the procedure taken in the analysis. The dark lines running
horizontal in the plots are the low efficiency zones created by the support structures. The
green lines mark the cuts on the angled sections of the sTGC. The red boxes indicate
the binning of the data. The black dots in each bin correspond to the best fit location of
the support within that bin.

4 Analysis Tool Description

Wire Support Position Analysis is a root software package that puts into practice the
procedure outlined above. It is comprised of several C++ objects that represent different
structures to be analyzed. The GitLab for this project is at https://gitlab.cern.
ch/McGill-sTGC/wire-support-position-analysis.

4.1 Installation

To install Wire Support Position Analysis, one can begin on lxplus and download the repository.
Running ’make’ in the downloaded repository will compile the code. Included in this package
are some slightly modified files of the DetectorGeometry class from the tgc-analysis package
(https://gitlab.cern.ch/McGill-sTGC/tgc_analysis). The modifications are
in the DetectorGeometryNSW.cpp file at lines 1018 onwards and the DetectorGeometryNSW.h
file at line 80.
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Alternatively, on a local machine one can compile the code by first installing root and xml2.
Then running the command ’make compile’ will compile the code.

4.2 Documentation

4.3 Files

• AnalysisTemplate.cpp/.h : Contains the AnalysisTemplate superclass for all the other
classes in the package and the FuncPt datatype.

• SupportAnalyzer.cpp/.h : Contains the SupportAnalyzer object for analyzing/simulating
a single support structure in a single quadruplet layer.

• LayerAnalyzer.cpp/.h : Contains the LayerAnalyzer object for analyzing/simulating a
layer of a quadruplet.

• QuadAnalyzer.cpp/.h : Contains the QuadAnalyzer object for analyzing/simulating a
quadruplet.

• Analysis.cpp/.h : A file containing common functions for validation and testing the classes.

• FitFuncs.cpp/.h : A file containing common functions that the classes use for best fitting.

• AtlasStyle.cpp/.h : A file containing the atlas root style. Used for creating pretty plots!

4.4 Classes

4.4.1 ANALYSISTEMPLATE

This object is entirely contained in AnalysisTempalte.cpp/.h and is the super class of the other
major classes used in the analysis.
Protected Members:

• int boxes : Division of wire space as described in theory.

• int width : Width of histograms used for fitting as described in theory or for rendering
(see fixedSize).

• int npar : Number of parameters in the fit function for correct statistics. May be depre-
cated.

• int events : Number of events per histogram for simulations. May be deprecated.

• bool isSubObject : Boolean noting if the object is for standalone use or if it initialized as
a sub object.

• bool fitLine : Boolean noting if the widths and locations should have a line best fit to
them.

• bool fixedSize : Boolean noting if histogram best fit should happen in a precise range
and turns width into a rendering option only. Settings for this are on lines 282-291 in
SupportAnalyzer.cpp.
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• double DataCut : Boolean noting if the object is for standalone use or if it initialized as
a sub object.

• FuncPt fitFunc : Pointer to a function used for the best fits. May be deprecated.

• DetectorGeometry * Geom : Pointer to a DetectorGeometry object from the tgc analysis
package.

• TFile * file : Pointer to a TFile from tgc analysis package.

• TTree * OutputTree : Pointer to a TTree stored in file.

• string FileInfo : String containing the detector type and some info about it. Used primar-
ily in folder creation.

Public Members:

• AnalysisTemplate(int initboxes, int initwidth, int initnpar, double initfitFunction(double
*, double *), const char *filename, const char *detectorType) : A toy constructor. Not
really useful.

• AnalysisTemplate() : The default constructor used by subObjects. Does nothing.

• int GetBoxes() : Gets boxes.

• int GetWidth() : Gets width.

• int GetNpar() : Gets npar.

• int GetEvents() : Gets events for the simulations.

• DetectorGeometry *GetGeom() : Gets the geometry object.

• string GetFileInfo() : Gets the file info.

• double EvalFunction(double *vars, double *pars) : Evaluates the function for fitting.

• double GetDataCut() : Gets dataCut.

• bool IsSubObject() : Gets SubObject.

• bool IsFitLine() : Gets fitLine.

• bool IsFixedSize() : Gets fixedSize.

• string formatter(double value, double error) : A number formatter to make nice scien-
tific numbers with errors.

• void folderMaker(const char *name) : Creates folders for saving data.

• void showData() : Saves a very primitive plot of the initial data before analysis.

• void filenameExtractor(const char *) : Extracts the FileInfo from a filename.
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4.4.2 SUPPORTANALYZER

The SupportAnalyzer object is the main work horse of the analysis and is a subclass of Analysis-
Template object. The best way to visualize what this object is is an actual support on the detector
designated by its layer and number (i.e. layer 1 support structure 3). Calling commands on this
class are in a sense being called directly on that support structure. Thus calling the analyze() or
simulate() commands described below do the actions of simulating and analyzing that support
structure in particular. This object has two modes of operation: standalone where a support is
being analyzed on its own or SubObject mode where the support is being analyzed in the context
of the layer or entire quadruplet.
Protected Members:

• int layer : The layer of the Quad being analyzed from 1 to 4.

• int supportNumber : Integer specifying which support to analyze on a layer from 0 to 4.

• int supportLoc : The strip ID where the theoretical location of the support falls.

• double StripSpacing : The space between strips in real space.

• vector<double> stripMax : The maximum range for the histogram best fit functions (size
2).

• vector<TH1I *> Hists : A vector of histograms corresponding to each bin in the analysis
that has a strip width set by the width variable (size boxes).

• vector<TF1 *> functions : A vector of functions used to fit the corresponding histogram
for each bin in the analysis. These are made in the image of the template function provided
in the initializer (size boxes).

• vector<TFitResultPtr *> Fits : A vector of fit results corresponding to each fitted func-
tion in functions (size boxes).

• TF1 *dataTemplate : The template function the simulation uses to sample a distribution
from.

• TF1 *line : A straight line that would be used to fit the locations of the support structure.

• TF1 *widthline : A straight line that would be used to fit the widths of the support struc-
ture.

• TGraphErrors *SupportPlot : The plot of the support fit positions along the quadruplet
with/without a line as set by fitLine.

• TGraphErrors *WidthPlot : The plot of the support fit widths along the quadruplet
with/without a line as set by fitLine.

• vector<double> bins : A vector containing the upper and lower bounds to each bin (size
boxes+1).

• void supportFinder() : A simple function to assign the correct supportLoc for each sup-
portNumber.

Public Members:
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• SupportAnalyzer(int initboxes, int initwidth, int initnpar, int initlayer, int initsup-
portNumber, double initfitFunction(double *, double *), const char *filename, bool
initFitLine = true, bool initfixedsize = false, double initdataCut = 0) : The standalone
mode initializer for the SupportAnalyzer class. The inputs are fairly self explanatory.

• SupportAnalyzer(int initboxes, int initwidth, int initnpar, int initlayer, int initSup-
portNumber, double initfitFunction(double *, double *), TFile *initFile, Detector-
Geometry *Geom, TTree *initOutputTree, string initFileInfo, bool initFitLine, bool
initfixedsize, double initdataCut=0) : The subobject mode initializer for the SupportAn-
alyzer class. The inputs are fairly self explanatory but this mode is intended for use in
other objects.

• SupportAnalyzer() : The SupportAnalyzer destructor.

• int GetLayer() : Gets layer.

• int GetSupportNumber() : Gets supportNumber.

• int GetSupportLoc() : Gets supportLoc.

• vector<double> GetBins() : Gets bins.

• vector<TF1 *> GetFunctions() : Gets the fit functions.

• vector<TH1I *> GetHists() : Gets the histograms for each bin.

• TF1 *GetLine() : Gets the location best fit line.

• TF1 *GetWidthLine() : Gets the width best fit line.

• TGraphErrors *GetSupportPlot() : Gets the best fit locations plot.

• TGraphErrors *GetWidthPlot() : Gets the best fit widths plot.

• void saveFunc() : Saves the histograms for the analysis of a support structure.

• void binner() : Creates the correct binning for the analysis of a support structure.

• void histmaker() : Creates the corresponding histograms to store the data in the bins made
by hist maker.

• void histreset() : Resets the values in the histograms for multiple simulations or analyses.

• void filler() : Fills the histograms with data from the file.

• void fitter() : Fits the provided fit function to the data in the histograms. Some tweaking
must be done to the initial parameter guesses on lines 297 to 311 if one plans to change
the functions.

• void locPlot() : Creates the plot of the locations of the support along the detector.

• void widthPlot() : Creates the plot of the widths of the support along the detector.

• void analyze() : Completes a full analysis of the support structure by combining the above
functions.

• TF1 *functionInit() : Initializes the function the simulation will sample from.
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• void simulatedFiller(double slope) : Fills the histograms with simulated data with a fixed
slope for straight supports.

• void simulate(int nEvents, double slope = 0.0) : Completes a full simulation of nEvents
per histogram and with a set slope of a support structure by combining many of the func-
tions above.

• void scaling() : Many simulation runs that test the dependence of the statistically achiev-
able precision with the amount of hits per histogram.

• void rebox(int newBoxes) : An unstable function that is able to change the number of bins
on simulated data. This function primarily serves to create a blurring effect on simulations
and is not recommended for use outside of that.

4.4.3 LAYERANALYZER

The LayerAnalyzer is comprised of 5 SupportAnalyzer objects in SubObject mode. It is a sub
class of the AnalysisTemplate class. The best way to visualize what this object is is an actual
layer on the detector (i.e. layer 1). Calling commands on this class are in a sense being called
directly on all the supports on that layer. Thus calling the analyze() or simulate() commands
described below do the actions of simulating and analyzing that layer in particular. This object
has two modes of operation: standalone where a layer is being analyzed on its own or SubObject
mode where the support is being analyzed in the context of an entire quadruplet.
Protected Members:

• int layer : The layer of the Quad being analyzed from 1 to 4.

• TMultiGraph *mg : A multigraph that contains all the TGraphErrors for the support
locations of its supports. See buildMultiGraph().

• vector<SupportAnalyzer *> supports : A vector of SupportAnalyzer objects corre-
sponding to each support on that layer (size 5).

Public Members:

• LayerAnalyzer(int initboxes, int initwidth, int initnpar, int layer, double initfitFunc-
tion(double *, double *),const char *filename, bool initFitLine = true, bool initfixed-
size = false, double initdataCut = 0) : The standalone initializer for a LayerAnalyzer
object.

• LayerAnalyzer(int initboxes, int initwidth, int initnpar, int initlayer, double initfit-
Function(double *, double *),TFile *initFile, DetectorGeometry *Geom, TTree *initOut-
putTree, string initFileInfo, bool initFitLine, bool initfixedsize, double initdataCut) :
The subobject mode initializer for the LayerAnalyzer class. This mode is intedended for
use in other objects.

• LayerAnalyzer() : The class destructor.

• void simulate(int nEvents, double slope = 0.0) : This function simulates every support
structure on that layer with nEvents per bin per support for a preset slope.
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• void analyze() : A function that calls analyze() on all the supports on that layer.

• void visualize() : A function that visualizes the data in mg in a lovely way. Works best
with fitLine=True.

• void buildMultiGraph() : A function that builds a TMultiGraph out of the SupportPlot
from each SupportAnalyzer in the layer.

• void rebox(int newBoxes) : An unstable function that is able to change the number of bins
on simulated data. This function primarily serves to create a blurring effect on simulations
and is not recommended for use outside of that.

• int GetLayer() : Gets layer.

• TMultiGraph *Getmg() : Gets mg.

• vector<SupportAnalyzer *> GetSupports() : Gets the vector of support analyzers.

4.4.4 QUADANALYZER

The QuadAnalyzer is comprised of 4 LayerAnalyzer objects (or effectively 20 SupportAnalyzer
objects) in SubObject mode. It is a sub class of the AnalysisTemplate class. The best way to
visualize what this object is is the actual Quad. Calling commands on this class are in a sense
being called directly on all the layers of that Quad. Thus calling the analyze() or simulate()
commands described below do the actions of simulating and analyzing the Quad. This class
does not have a SubObject mode.
Protected Members:

• vector<LayerAnalyzer *> layers : A vector of LayerAnalyzer objects that are running
in subObject mode (size 4).

Public Members:

• QuadAnalyzer(int initboxes, int initwidth, int initnpar, double initfitFunction(double
*, double *),const char *filename, bool initFitLine = true, bool initfixedsize = false,
double initdataCut = 0) : The initializer for a QuadAnalyzer object.

• QuadAnalyzer() : The class destructor.

• void simulate(int nEvents, double slope = 0.0) : This function simulates every support
structure in the Quad with nEvents per bin per support for a preset slope.

• void analyze() : A function that calls analyze() on all the layers in the Quad.

• void visualize() : A function that visualizes the data in the best fit locations of all support
in the Quad in a lovely way! Works best with fitLine=True.

• void rebox(int newBoxes) : An unstable function that is able to change the number of bins
on simulated data. This function primarily serves to create a blurring effect on simulations
and is not recommended for use outside of that.

• vector<SupportAnalyzer *> GetSupports() : Gets the vector of layer analyzers.
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4.5 Other Files and Methods

4.5.1 ATLASSTYLE.CPP

This is a slightly modified version of the AtlasStyle.C file that is used for creating ATLAS plots.
It contains a specific TStyle pointer called AtlasStyle and a one line command to activate it.

4.5.2 FITFUNCS.CPP

This function contains many template functions used by the objects in the code.

• double invertedGaus(double *vars, double *pars) : A simple inverted Gaussian and the
main histogram fitting function used by the other classes. This function has npar = 4 and
the parameters are {Mean,Norm,STD,C} and is computed as

f (x) = Norm∗ e−(
x−Mean

STD )2
+C

• double linear(double *vars, double *pars) : A straight line function used for location
best fitting and plotting. This has npar = 2 and the parameters are {Slope, C}. It is
computed as

f (x) = Slope∗ x+C

• double stepFunction(double *vars, double *pars) : A step function used to best fit
histograms. It has npar = 4 and the parameters are {Center, Norm, Width, C}. It is
computed as

f (x) =

{
C Width≤ |Center− x|
C−Norm Width≤ |Center− x|

• double summedGaus(double *vars, double *pars) : This function is a sum of the in-
verted Gaussians from above to create a blurred Gaussian used for histogram fitting. It has
npar = 5 and the parameters are {Center, Norm, STD, C, Spacing}. It is computed as

f (x) =
1

∑
i=−1

Norm∗ e−(
x−Center−i∗Spacing

STD )2
+C

• double fftStep(double *vars, double *pars) : This is a Fourier Series for a step function
with 20 terms. It is supposed to provide a slightly rounder step function for best fitting
to histograms. It has npar = 5 and the parameters are {Center, Norm, Width, C}. It is
calculated as:

f (x) =C+
20

∑
i=1

Norm
i

[sin(i∗Center∗Width)sin(i/2)sin(i∗ x∗Width)

+ cos(i∗Center∗Width)sin(i/2)cos(i∗ x∗Width)]
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4.5.3 ANALYSIS.CPP

This file is treated as the main interface between the objects and contains many useful logical
operations that combines all the structures in the package. Obviously these objects can be used
outside of this file but It is already set up with all the correct imports.

• int main(int argc, char *argv[]) : This it the main for the package, where one can actually
run the analysis or many of the other functions in the Analysis.cpp file. It always must start
by calling SetAtlasStyle() for the plots to come out looking correct.

• void compareFunc() : This function compares the performance of the invertedGaussian
and summedGaussian fit functions. It outputs the result in an easy to read CSV for python.

• double chisqCollector(QuadAnalyzer *Quadruplet) : Collects the average reduced
χ2/nd f for an entire quadruplet.

• void validator(const char *filename) : This creates a primitive plot of the average sta-
tistical uncertainty on a layer of a quadruplet as a function of the number of hits per
histogram.

• void AnalyzeData(int argc, char *argv[]) : Analysis results from both the 3100V and
2900V data for a single detector and writes it into some convenient files for further pro-
cessing. One file creates convenient LaTeX tables and the other two contain the slopes and
the errors in their slopes. To feed it data just feed in filenames into argv.

• void widthHypothesis() : Tests the hypothesis that the invertedGaussian fit performs bet-
ter at the extremities of the histrograms than in the center even in simulations.

• void boxHypothesis() : Tests the hypothesis that there is a blurring effect making the
smaller number of bins perform better.

• void ComparePlots(int argc, char *argv[]) : This compares point by point results be-
tween 2900V and 3100V data. To feed it data just feed in filenames into argv.

• void LocPlotCombiner(SupportAnalyzer *Run2900V, SupportAnalyzer *Run3100V)
: A command called in ComparPlots that compares the locations.

• void WidthPlotCombiner(SupportAnalyzer *Run2900V, SupportAnalyzer *Run3100V)
: A command called in ComparPlots that compares the widths.

• void CompareBinPlots(const char *data) : Called to compare the results of the same
run with different bin counts.

• void ManyBinLocCombiner(vector<SupportAnalyzer *> Supports) : Compares the
locations of many bin counts, used in CompareBinPlots.

• void ManyBinWidthCombiner(vector<SupportAnalyzer *> Supports) : Compares
the widths of many bin counts, used in CompareBinPlots.

• void CompareCutPlots(const char *data) : Called to compare the results of the same
run with different voltage cuts.

• void ManyCutLocCombiner(vector<SupportAnalyzer *> Supports) : Compares the
locations of many voltage counts, used in CompareCutPlots.
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• void ManyCutWidthCombiner(vector<SupportAnalyzer *> Supports) : Compares
the widths of many voltage counts, used in CompareCutPlots.

4.6 Usage and Examples

Primarily these objects were designed to be used in the Analysis.cpp file with the following
general workflow:

1. Call SetAtlasStyle() for the figure creation.

2. Initialize the analysis objects as needed for the task at hand (This has some caveats).

3. Analyze or Simulate on the object. This automatically generates a few plots for the effec-
tive fit width and effective fit locations.

4. Further process the results from the automated Analysis. These results are most often
stored in the TF1s that were used to best fit the histograms or in the TGraphErrors. The
results can be extracted with the getters.

5. Delete the objects. Be very careful to not delete any parts of the objects in your further
processing.

Upon initializing the analysis objects, one automatically generates a primitive plot on the
input data showing the number of muon hits as a function of stripID per layer as well as a plots
directory with a sub folder named appropriately for each run. After running a simulation or
analysis, more subfolders are generated for each layer and are filled with plots of every individual
fit and plots of the fit location and width over the whole detector. One can also create comparison
plots between different analysis objects by using the comparison methods in Analysis.cpp. There
are other outputs possible, for example the whole quadruplet or layer plots created by visualize()
may be called explicitly or some of the analytic fit quality functions in Analysis.cpp will generate
some .dat files for further reading and processing.

Many examples of this are present in the Analysis.cpp document as essentially every com-
mand follows this structure for data flow. Here is an example that collects results on the perfor-
mance of the invertGaussian on data from the McGill sTGC lab.

1 void compareFunc()
2 {
3 SetAtlasStyle(); //This is the first step to the data flow!
4

5 //now we begin our dataflow. Here we are trying to run over many
settings for widths and boxes.

6 //here we initialize a quad analyzer and complete a full data
flow cycle for each set of settings

7 for (int width = 9; width < 22; width += 4)
8 {
9

10

11 for (int boxes = 5; boxes < 16; boxes += 5)
12 {
13 //2. initialize
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14 auto Invert = new QuadAnalyzer(boxes, width, 4,
15 invertedGaus,
16 "./QL2C8_3100V_P1_TTree.root");
17 //3. analyze
18 Invert->analyze();
19 //4. Further process by collecting the reduced chi^2 from

another function and printing
20 cout << chisqCollector(Invert) << endl;
21 //5. delete object
22 delete Invert;
23 }
24 }
25 //thus concludes this short example that is taken as an excerpt

of the compareFunc() method in Analysis.cpp.
26 }

There are a few limitations that were caused by poor foresight in the structure of these objects
that frankly do not cause enough of an issue to have warranted a change. First and foremost, a
data file must be loaded into the objects even if simulating! This can be a little annoying but it
would have taken too much time to fix. Second, one cannot delete any of the analysis objects
without either analyzing or simulating on them! This is once again a mild inconvenience
since there is no reason to initialize these objects unless the intention is to process them further.

4.6.1 IMPLEMENTING CUSTOM FITTING FUNCTIONS.

To insert your own fitting function for experimentation the procedure is fairly straightforward.
Simply create a function that returns a double and has two arrays of doubles as inputs. The first
array corresponds to the Y location of each bin and thus has size 1. The second array is of a user
selected size npar and is the input parameters. The first input must be the determined location
and the second must be the effective width. Then, passing the function to the analysis object of
the users choice with the according npar will make the fit. To adjust initial parameter guesses,
they are stored in SupportAnalyzer.cpp at lines 290 to 315.

5 Results and Validation

Many unexpected patterns are manifested in the results of the analysis. These prompted
dropping some of the initial assumptions made. Originally, it was expected that the sup-
ports would form clean and straight lines when best fitted to but it was quickly realized
this is not the case. This is still under investigation, but explains the absence of many
of the plots that the analysis package is capable of creating from this report as they are
nonsensical without such an assumption.

The data used in this analysis is from the McGill sTGC lab that tests and character-
izes Canadian made quadruplets with cosmic rays. This data collection is done in a ho-
doscope that mounts the quadruplet with a PMT/scintillator on the top and the bottom.
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When the scintillators measure concurrent hits, the readout electronics are triggered.
Data is collected at 2900V instead of 2800V because of altitude differences between
the LHC (underground) and the lab (atop a hill). There is also data collected at 3100V
because the electronics in the lab are different then those being installed in the LHC and
need increased gain from the detectors.

A single data run on a Quadruplet is done at 2900V or 3100V and comprises of 4
one hour runs of collection. This is so if there is a problem in the run, the entire 4 hour
collection period is not wasted. Thus, for this analysis all data is the equivalent of 4
hours of data collection. Using 2900V and 3100V concurrently is similar to 8 hours of
data.

5.1 Fitting Functions

The fitting functions in this code were all tested to different levels to determine how
well they worked but have all been included in the original code. This section focuses
on the characterization of the best fit functions performances starting with the two least
impressive functions.The step function and Fourier series had the worst performance
and were never tested with any rigorous methods. Just examining the fits in figure 5 by
eye revealed that they were consistently bad across the board. The step function was
initially added under the assumption that we would have an abrupt dead zone where
the support is covering the strips. This proved to not be the case and so it and its
Fourier series (which aimed to make the the step less sharp) were quickly discarded as
unsuitable.

The inverted Gaussian and summed Gaussian were next in the list. In figure 5, both
performed reasonably well. More analytical methods were then developed to determine
the performance of each for an entire detector. Using data from QS3P8, the average
χ2/nd f was collected for the entire detector with many analysis settings. The goal was
to select the fit that had χ2/nd f that was the closest to 1 since that was an indication of a
healthy fit. The table 1 shows the results of this computation and reveals two interesting
patterns beyond the identification of the better performing function. It is evident that
that inverted Gaussian does perform consistently better than the summed Gaussian, and
so all analysis from here onward was conducted with the inverted Gaussian. The trend
of the reduced χ2 to decrease with bins and widths was next, as it could provide some
insight on the performance of the functions with different settings. Two hypotheses
were conjured up as to why these patterns are appearing.

First, as the strip width of the histograms increases, the fits perform better because
the relatively flat area outside the dip is much easier to fit to than the dip. To test this,
a simulation generated many plots of different widths for an entire quadruplet with a
similar amount of data but with the sampling distribution being the exact same as the
fitting function (inverted Gaussian). If this hypothesis is correct, then even fitting the
the same function as the distribution should demonstrate the same effect. Table 2 shows
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Figure 5: Four typical fits on a support from QS3P8 data by (A) the step function, (B)
the Fourier series of a step function, (C) an inverted Gaussian, and (D) the summed
Gaussian. This is meant to illustrate the the similar performance at fitting to the dip by
C and D but the inadequacy of (A) and (B).
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Type 5 Bins 10 Bins 15 Bins
Strip Width = 9

Inverted Gaussian 3.89 2.12 1.49
Summed Gaussian 4.68 2.51 1.78
Strip Width = 13
Inverted Gaussian 3.53 2.02 1.45
Summed Gaussian 3.79 2.15 1.56
Strip Width = 17
Inverted Gaussian 2.95 1.77 1.32
Summed Gaussian 3.05 1.86 1.38
Strip Width = 21
Inverted Gaussian 2.69 1.66 1.29
Summed Gaussian 2.74 1.69 1.32

Table 1: Comparison of the average reduced χ2 for fits conducted using the inverted
Gaussian and summed Gaussian functions on real QS3P8 data at 3100V. The Inverted
Gaussian has values that are consistently much closer to 1 across all settings, and so it
is deemed the superior functions. It is important to note that the reduced χ2 decreases
with smaller bins and with larger widths.

that this trend is indeed matched even in simulation, and that the confirms that this is a
consequence of the fit being more stable at its extremities.

Width 9 11 13 15 17 19 21 23
χ2/nd f 2.28 1.73 1.42 1.21 1.04 1.04 0.98 1.00

Table 2: The reduced χ2 for a simulation of a QS3P quadruplet with approximately
the correct amount of data per bin for each width to match reality. The fitting function
here matches the sampling distribution of hits for the simulation, and so the downward
trend indicates that the fit is just more stable in the extremities where the distribution is
sampled more often

Second, the bin hypothesis states that a blurring effect from the location of the sup-
port moving considerably over the x-axis length of the bin actually makes the fits per-
form worse. To test this, an extension to the simulation capabilities of the code was built
that provided a more realistic scenario. The simulation acted on a strip by strip basis,
and then added all the hits together at the end to create such a blur. Presumably, the
larger the slope that the support structure would have the worse this trend would be and
so the simulation was ran at gradually increasing slopes. The results showed that in the
ranges of slopes expected for real detectors, this effect is negligible. At this point no
hypothesis has been created that can explain away this trend.
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Figure 6: Demonstrating the analysis’ ability to scale in statistical uncertainty as a func-
tion of amount of data per bin. This is done with a fixed bin width of 15 using a QS3P8
as a model and running scaling() from a SupportAnalyzer object.

5.2 Validation and Data Scaling

The simulation was run at various slopes, number of hits, and initial settings to de-
termine the performance of the analysis at determining the support locations from the
data. The results were quite promising for the best achievable statistical uncertainty of
∼ 150µm on locations of the support along the detector for a realistic amount of data.
Similarly if the assumption is made that the support is a straight line, an estimate of the
slope can be made to within 10−3mm/mm. Simulations quite easily can surpass these
numbers even with only double the data per quadruplet per voltage (represented by an 8
hour run instead of a 4 hour run). The statistical uncertainty as a function of number of
hits curves can be seen in figure 6.
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Slopes
Hits 1.00E-05 1.00E-04 1.00E-03

1000 Hits (1.1±1.9)x10−4 (1.5±1.8)x10−4 (1.29±0.19)x10−3

2000 Hits (1.5±1.3)x10−4 (−0.57±1.33)×10−4 (1.20±0.13)x10−3

3000 Hits (0.21±1.05)×10−4 (0.82±1.07)×10−4 (1.13±0.10)x10−3

4000 Hits (1.65±0.92)x10−4 (−1.9±9.2)x10−5 (1.133±0.093)x10−3

5000 Hits (−0.52±8.27)×10−5 (4.1±8.2)x10−5 (1.045±0.084)x10−3

6000 Hits (6.4±7.6)x10−5 (5.9±7.6)x10−5 (9.54±0.76)x10−4

7000 Hits (−7.9±7.1)x10−5 (4.6±7.0)x10−5 (9.77±0.71)x10−4

8000 Hits (−5.6±6.6)x10−5 (1.14±0.66)x10−4 (1.022±0.066)x10−3

9000 Hits (3.5±6.2)x10−5 (1.14±0.63)x10−4 (9.67±0.63)x10−4

10000 Hits (−1.02±0.59)x10−4 (1.98±0.59)x10−4 (1.069±0.059)x10−3

11000 Hits (−1.1±5.6)x10−5 (8.4±5.6)x10−5 (9.81±0.56)x10−4

12000 Hits (3.7±5.4)x10−5 (7.5±5.4)x10−5 (1.139±0.054)x10−3

13000 Hits (2.4±5.2)x10−5 (1.63±0.52)x10−4 (8.97±0.52)x10−4

14000 Hits (−1.5±5.0)x10−5 (1.09±0.49)x10−4 (1.063±0.050)x10−3

15000 Hits (−1.7±4.8)x10−5 (−1.1±4.8)x10−5 (9.90±0.48)x10−4

16000 Hits (0.53±4.69)×10−5 (0.65±4.66)×10−5 (1.054±0.047)x10−3

17000 Hits (−4.8±4.5)x10−5 (5.8±4.6)x10−5 (1.067±0.046)x10−3

18000 Hits (2.6±4.4)x10−5 (1.35±0.44)x10−4 (1.027±0.044)x10−3

19000 Hits (2.3±4.3)x10−5 (1.53±0.43)x10−4 (9.89±0.43)x10−4

20000 Hits (−3.3±4.2)x10−5 (6.6±4.2)x10−5 (9.23±0.42)x10−4

21000 Hits (−1.4±4.1)x10−5 (1.82±0.41)x10−4 (9.56±0.41)x10−4

22000 Hits (−1.9±4.0)x10−5 (9.2±4.0)x10−5 (9.47±0.40)x10−4

23000 Hits (0.90±3.90)×10−5 (1.41±0.39)x10−4 (9.75±0.39)x10−4

24000 Hits (1.7±3.8)x10−5 (3.5±3.8)x10−5 (1.015±0.038)x10−3

25000 Hits (4.7±3.7)x10−5 (6.9±3.7)x10−5 (1.050±0.037)x10−3

26000 Hits (4.1±3.7)x10−5 (1.55±0.37)x10−4 (1.056±0.037)x10−3

27000 Hits (1.8±3.6)x10−5 (2.9±3.6)x10−5 (9.69±0.36)x10−4

28000 Hits (9.2±3.5)x10−5 (4.6±3.5)x10−5 (1.021±0.035)x10−3

29000 Hits (−0.59±3.48)×10−5 (6.7±3.5)x10−5 (1.007±0.035)x10−3

30000 Hits (−2.3±3.4)x10−5 (9.8±3.4)x10−5 (9.99±0.34)x10−4

31000 Hits (−2.3±3.4)x10−5 (9.7±3.4)x10−5 (1.017±0.034)x10−3

32000 Hits (−4.0±3.3)x10−5 (1.46±0.33)x10−4 (1.013±0.033)x10−3

33000 Hits (3.8±3.3)x10−5 (1.09±0.33)x10−4 (9.87±0.32)x10−4

34000 Hits (4.0±3.2)x10−5 (1.30±0.32)x10−4 (1.008±0.032)x10−3

35000 Hits (5.2±3.2)x10−5 (8.3±3.2)x10−5 (9.90±0.32)x10−4

36000 Hits (−2.6±3.1)x10−5 (1.64±0.31)x10−4 (9.74±0.31)x10−4

37000 Hits (−0.048±3.060)×10−5 (9.2±3.1)x10−5 (1.017±0.031)x10−3

38000 Hits (3.9±3.0)x10−5 (9.3±3.0)x10−5 (1.027±0.030)x10−3

39000 Hits (−2.9±3.0)x10−5 (6.7±3.0)x10−5 (1.023±0.030)x10−3

40000 Hits (−2.7±3.0)x10−5 (1.37±0.29)x10−4 (1.001±0.029)x10−3

41000 Hits (2.1±2.9)x10−5 (7.5±2.9)x10−5 (1.035±0.029)x10−3

42000 Hits (1.6±2.9)x10−5 (1.18±0.29)x10−4 (1.073±0.029)x10−3

43000 Hits (2.4±2.9)x10−5 (1.20±0.28)x10−4 (1.055±0.028)x10−3

44000 Hits (4.4±2.8)x10−5 (1.44±0.28)x10−4 (9.83±0.28)x10−4

45000 Hits (0.88±2.78)×10−5 (7.8±2.8)x10−5 (1.001±0.028)x10−3

Table 3: The real slope of the simulation on QS3P8 versus the predicted slope from the analysis in relation
to the number of hits in each bin.
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Figure 7: The typical result for best fit locations in the bins from a support in QS3P8 at
3100V. It is fairly obvious that a line is not the greatest fit here as only a single error bar
intersects the line. There is a hint of a periodic effect in this and many other location
plots that has yet to be explained.

To validate the accuracy of the analysis, artificial slopes in the simulated data were
introduced for a layer. Then, the prediction of the slope made by the analysis was
entered into table 3 with the known value and the number of hits.

5.3 Examination of a QS3P8 Quadruplet

The examination of real data was done on the QS3P8 quadruplet. It has been run through
plethora of initial settings both at 2900V and 3100V. These data runs were also the
primary sets used for testing and development of the analysis package, although others
were used to test the functionality with different shapes of quadruplets.

Initial trials with this data shown in figure 7 reveals that the guess that the supports
are straight may not be correct or that there is some external effects. Periodic effects
are observed in many width and location plots but no statistics have been run to confirm
their presence.

An explanation for the periodic effect comes from misalignment of the finite resolu-
tion strips (y-axis) and the support structures. Since the support is∼ 7mm and the strips
have a ∼ 3.2mm pitch, the support will go from perfectly covering 2 strips to overlap-
ping with 3 and back again as it winds between the strip pattern. This effect would
only create a disturbances in the results if the offset between the support and strips was
large enough for the support to oscillate between these positions. Looking closely at the
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Figure 8: A sample of the best fits taken on real QS3P8 data with a strip width of 15 and
8 bins in the wire direction. The fits do perform well, but the bases of the first four and
last four bins don’t change shape in a way that suggests periodicity. Furthermore, plots
3 and 6 have considerable extra weight on one side of the support than another, creating
a pulling effect to that side.

histogram fits in figure 8, no such oscillations in the width of the base of the dip seem
present. Furthermore, this would imply that a straight support structure would have a
large slope of ∼ 5mm/mm which is far within what a straight line support is capable
of identifying. This rules out this hypothesis, but no other idea has been formulated to
explain the periodicity.

Figure 8 examined by eye suggested having the histograms fit to too many strips
may lead to non critical regions of the fits pulling the data left and right. The decision
was made to then drop the width in hopes of reducing this "pulling" effect in the fits.

5.3.1 STABILITY

Here the analysis was done on both 3100V and 2900V data under different data binnings
along the wireID (x-axis) direction to check if cutting the data into different bins had
any effect on the results. Fortunately, figure 9 reveals that there is consistency between
different binnings. This further lends credence that there is some external effect on the
data that is not accounted for in this analysis.
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Figure 9: The best fit locations of the low efficiency zone cast by the support structures
in a single data run analyzed with different bin counts. There is strong consistency
between all the different binnings, indicating that the analysis is indeed stable.

5.3.2 2900 V VS 3100 V RESULTS

A principle method used to validate the performance of the analysis was to cross check
the results between 2900V and 3100V data. These do come from the same quadruplet,
so naturally the results should be consistent. Figure 10 shows what initially was pro-
duced by the analysis. It displays inconsistencies on the order of a few millimeters,
which is far beyond the statistical uncertainty expected at this volume of data. The
widths of the 3100V data is consistently higher than that of 2900V data, which on its
own invalidates the results obtained for the best fit locations. The current hypothesis as
to the cause is different noise floors of 3100V and 2900V data.

5.3.3 ADC COUNT CUTS

To follow up the noise floor hypothesis, ADC count cuts were made to the minimum
required of a recorded hit. This was to reduce the effects of the noise floor and "neigh-
bor hits" where the system records the hit and the bin neighboring it. Figure 11 shows
that there is a decrease in the best fit widths as the cuts in voltage get more aggressive.
Cuts larger than 80 ADC counts for 2900V converge to a consistent width value. Fur-
thermore, the reduction in widths hints that cuts in counts could make the 2900V and
3100V widths agree.
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Figure 10: Comparison between the 2900V and 3100V data under the same analysis
settings for a support on a QS3P8 quadruplet. There is quite wild disagreements as
large as 3 mm and being on average ∼ 500µm away.

On that note, 2900V and 3100V width comparisons with a 100 ADC counts has good
agreement, and the location fits are in much greater agreement than earlier. Currently
inconsistencies between the two types of runs are within a millimeter. This is clearly an
important route forward, and there is more work to be done fine tuning the cuts needed
and perhaps adjusting the fitting function to more closely match the new shape of the
cut dips.
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Figure 11: Comparisons between the same support on 2900V QS3P8 data for different
cuts in the ADC counts. There is a clear segmentation after 80 where the voltages seem
to converge to a result.

6 Conclusion

This novel technique for determining support locations is still in its adolescent stages. It
is currently functional, but many of the patterns produced by it are not well understood.
Once that point is reached, the stability of the results and the ever improving consistency
between 2900V and 3100V data as well as the validation efforts demonstrate that it
should be possible to detect some manufacturing imperfections. This process will be
facilitated by working on data sets of other detectors in the future and checking if the
same patterns manifest themselves or if these are unique to the QS3P8 analyzed here.
Furthermore, with the introduction of cutting at the end of last section, there is a prompt
to revisit the fitting functions and find one that may fit the cut shadow much better than
the inverted Gaussian.
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