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1 Introduction

1.1 Top Quark Production at the LHC

The top quark is the heaviest fundamental particle at 175 GeV. Its large mass allows it to play a
special role in the standard model and top quark physics provides key insight into strong interactions
and physics at the electroweak scale. At the LHC, top quarks are produced in pairs through collisions
of pp pairs at 13 TeV and observed through detector signals of decay products. The production of
top quarks result in 6 partons in the final state, in one of three decay channels involving leptons
and jets from quarks and gluons. The challenge is to map detected momenta and reconstruct the
kinematics of the top quark pairs in these events. Current reconstruction algorithms include χ2-fit
and KLFitter, which use statistical methods to predict most likely event processes. Improvements in
top quark reconstruction are key to understanding top quark processes and properties and precision
measurements of the production process.

Figure 1: An example of a leading order semileptonic decay process for top quark production resulting
from gluon scattering.

1.2 Motivation

Current approaches of reconstruction based on likelihood methods such as χ2-fit rely on objective
functions and combinatorial methods to determine the most likely event history for each top quark
event. The complexities of top quark event kinematics and limited detector resolutions make the
reconstruction of top quark momenta difficult. Existing methods are often susceptible to resolution
and event selection limitations. In particular, cuts to the dataset and detector resolutions limit the
accuracy and type of events that algorithmic approaches can predict. Additionally, especially in
semileptonic lepton+jets channels, missing momenta from leptons can provide a challenge to recon-
struction. We propose improvements to AngryTops, a machine learning approach to reconstructing top
quark momenta in pair production events. The network approach provides probabilistic reconstruc-
tions independent of objective functions, potentially improving upon the accuracy and overcoming
limitations of existing methods. In this project, we develop improvements to AngryTops, a machine
learning suite that reconstructs top quark production and decay event kinematics trained on Monte
Carlo event samples. We aim to improve the accuracy and optimize performance of the network
to a level comparable to those of existing algorithmic approaches as well as present new ways of
representing predictions.

1.3 Previous Work

Previous work provided an implementation for AngryTops, a machine learning approach to top quark
reconstruction that predicts ttbar event histories using response of the detector. AngryTops predicts
top, bottom, and W-boson daughter momenta in the lepton+jets channel, in which one top quark
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decays fully hadronically while the other semileptonically. The network is trained and tested on events
generated using Monte Carlo event generators for events generated in pp collisions at 13 TeV. 200
million events were generated and leading order events, parton showering, and detector effects are
simulated using MadGraph5, PYTHIA8, and Delphes3 respectively. Events are cut on the transverse
momentum (pT ) and pseudorapidity η of the particles where we select only the events with pT greater
than 20 GeV and |η| greater than 2.5. After these cuts, roughly 5 million events are left for training
and testing of the network.
Previous work experimented with a LSTM’s BDLSTM’s, FFNN’s, and CNN’s and have found that
CNN’s perform best in terms of accuracy and training speed. Representations of input and output
data various coordinate systems such as Cartesian (in terms of x−, y−, z− momenta, ie. px, py, pz)
and polar (in terms of transverse momentum, pseudorapidity, and azimuthal angle, ie. pT , η, φ) were
explored. Additionally, feature scaling and additional training hyperparameters were tested. The
current network runs with a CNN architecture with minmax scaling and performs comparably well
with both representations. The current architecture is summarized in the diagram below.

Figure 2: The convolutional neural network

The network consists of 6 convolutional layers, 2 pooling layers, and 5 dense layers and is trained using
an Adam Optimizer with a learning rate of 10−5 and MSE loss function. The input to the network
consists of a 6×6 matrix containing the momenta, mass, b-tagging state of each jet in addition to the
momenta, time of flight, missing transverse energy, missing azimuthal energy of the muon. The output
of the network is a 6 × 3 matrix containing the momenta of the bottom quark, W-boson, and top
quark from the hadronic and semileptnoic quark decays. The accuracy of the output of the network
is comparable to those of benchmark reconstruction methods based on χ2-fit. The network and χ2-fit
perform similarly on reconstructing top quark kinematics. AngryTops improves upon χ2-fit for some
pT and η variables, while χ2-fit significantly outperforms AngryTops on φ variables.

2 Goals

Our main goal in this project was to optimize the network performance in making predictions of
the various kinematic variables for each parton. In particular, while the existing network performs
reasonably well on η and pT variables, φ variables are comparatively less accurately predicted in some
partons. The predictions of the network demonstrates a structure in some φ variables, in contrast
to the flat distributions in the truth data. Previous works has suggested a dependence on data
representation for prediction structure and quality. Additionally, various training parameters such as
number of epochs, data scaling, and loss functions can be further optimized and explored. To this
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end, we aim to explore the effect of representations of input and output data and experiment with a
a multitude of training parameters such as data scaling, the number of epochs for the training, and
custom loss functions. Modifications on the dataset that is fed into the network were also made in
an attempt to help the network produce better predictions. Such modifications comprise augmenting
the dataset, flipping the sign of the pseudorapidity and making cuts on the transverse momenta of
the jets (as well as the truth particles).
Additionally, while previous works experimented with network types and structures, current outputs
suggest that results may still be improved with the implementation of a more suitable network struc-
ture. As such, we also aim to experiment with types of neural network as well as examine the structure
of the current architecture. As a way of measuring the network performance, we have also introduced
histograms which indicate the distribution of the closest jets to the bottom quark and the W boson,
or both.

3 Improvements Investigated

Previous investigations suggest that both the network architecture and configurations and training
parameters can be further optimized to improve the quality of predictions. We explore an RNN
architecture for the network and compare its performance to that of the CNN. Additionally, we
experiment with various training parameters and examine their impact on predictions for the CNN.
For training, the input and output data is rescaled to a consistent range. We compare two data
rescaling methods: minmax and standard. The first rescales data taking into account the entire range
of the kinematic variable, and the second normalizes each variable to a mean of 0 and a standard
deviation 1. Another training parameter we experimented with is the number of epochs, which
indicates the number of times the dataset is fed through the network. While we train the network
at a standard length of 15 epochs for usual sessions, we also test epoch numbers between 50 to 100
to estimate the number of epochs at which loss values stabilize an thus the optimum of epochs for
training for the CNN.
Another parameter we explore is the representation of the input and output momenta of the network.
While previous work performed training in both Cartesian (px, py, pz) and polar coordinates (pT , η, φ),
we provide a rigorous comparison of the representations trained on the CNN. One potential cause of
the poor prediction of φ variables is the failure to account for the continuity of the φ variable at −π
and π during training when trained in pxpypz coordinates. We attempt to implement a custom loss
function that into takes account the wraparound for φ when computing the loss component in φ. In
addition to these, we also examine various other training parameters such as batch size and metrics.
Although the χ2 values give an approximate indication of the goodness of fit between the predicted
and truth data, χ2 comparisons become unreliable at large values, and in particular when the sizes
of the two fits being compared differ. We develop a closest jet matching algorithm identifying the
closest jets to each hadronic b and W and leptonic b as an additional measure of network performance,
and use this to make cuts on the dataset as well to improve the quality of training and predictions.
Lastly, we investigate ways to increase the size of the dataset through data augmentation, where we
develop ways to augment data by rotating and flipping each event along the beam axis. We describe
the results and discuss implications in the following section.

4 Results and Discussion

4.1 RNN Architecture

We construct an RNN architecture as a preliminary experimentation with other network architectures.
The network consists of 6 RNN layers and a dense output layer with 1 input time step and 3 output time
steps. The number of time steps is reflective of the interpretation of the input jet momenta as a single
event and the chronology of the decay, where in reconstruction of the b, W , and t kinematic variables,
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the predictions of the W and t depend on the output from prior steps. The architecture is trained
and tested on the same dataset using the same scaling, loss function, and training hyperparameters.

Figure 3: The RNN model

Preliminary results show that the RNN performs notably worse than the existing CNN architecture
except in some t kinematic variables. This is likely due to the structure of the RNN network, where
results from the predictions in the b and W timesteps can be used to improve predictions of t variables.
Adjustments to the network to improve predictions in the b and W variables should be investigated.
Additionally, the RNN trains at roughly 7000s per epoch, significantly slower than the 2000s per
epoch rate of the CNN. The RNN needs to be further optimized, both in terms of the structure and
the hyperparameters, in order to perform at a comparative accuracy to the CNN and existing χ2

reconstruction methods.

4.2 Training parameters

4.2.1 Data Scaling

For neural networks such as the CNN or the RNN, the weights are usually small random values that
are updated by the optimizer as a response to error estimates on the dataset, so it is necessary to scale
the inputs and outputs of the network. We have experimented with two data scaling methods. The
first is min-max scaling, which normalizes data between -1 and 1 and is given by the equation below.
Here xscaled is the scaled value, x is an arbitrary entry in the original data, and xmin and xmax are
the minimum and maximum of the dataset respectively:

xscaled =
x− xmin

xmax − xmin
The other method is standard normalization, given by the equation below, where in this case, x is the
mean value of the dataset and σ is the standard deviation of the dataset.

xscaled =
x− x
σ
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We have found that the network performs very similarly with both data-scaling methods. Below are
some distributions of the pseudorapidity of the bottom quark and the φ and pT of the hadronic top

quark. Visually-speaking, there is no striking difference in the predictions. Though the χ2

NDF values
are different, they do not present sufficient evidence to pursue one scaling method other the other.
Ultimately, we ran most of our trainings using the minmax scaling.

(a) minmax scaling (b) standard scaling

(c) minmax scaling (d) standard scaling

(e) minmax scaling (f) standard scaling

Figure 4: Comparison of minmax scaling and standard scaling
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4.2.2 Number of Epochs

In machine learning terms, an epoch is when the whole dataset had the opportunity to pass through
the neural network and update the network’s internal parameters. For AngryTops, 90% of the dataset
is used for training and 10% is for validation. During the latter, the loss function values are computed.
Our aim here was to determine the number of epochs that would optimize the loss function. In previous
works, training were run on a maximum of 50 epochs, whereby the loss function values still seemed to
decrease. We therefore experimented on 75 to 100 epochs, checking whether the loss and validation
values still were going down. Our models are built in such a way that training would be stopped
whenever the validation values started to increase. However, we also tried to let the training run
without stopping to judge whether the training should indeed be stopped when the validation goes
up or if the network would still be able to make better predictions irrespective of whether validation
increases.

(a) 50 epochs (b) 100 epochs

(c) 50 epcohs (d) 100 epochs

Figure 5: 50 epochs vs. 100 epochs prediction plots
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(a) 50 epochs (b) 100 epochs

Figure 6: Loss vs. Number of Epochs plots

As it can be seen in Figure 4, the predictions seem to improve for some kinematic variable(Hadronic t η)
and worsen for others(Leptonic b φ) when the number of epochs for the training is increased. In Figure
5, the training losses seem to be monotonically decreasing while the validation losses experience some
fluctuations. They do not present concrete evidence of ’overtraining’. This is certainly an interesting
outcome and perhaps necessitates further investigation in the future, especially in figuring out what
is the ideal number of epochs for training in such machine learning problems.

4.2.3 Representations

The dataset that we use for training comprises data in both px, py, pz representation and the pT ,
η, φ representation. Both representations contain the same information about the muon, jets and
truth particles, since they are related by a simple conversion outlined below. Our investigation here
consisted of working out which representation helps the network produce better predictions for the
kinematic variables of the partons.

px, py, and pz are the Cartesian representation of the particles’ momenta. We assume that the z-
direction is along the axis of the proton beam. pT is thus the transverse momentum, φ is the azimuthal
angle and θ is the polar angle. Notably, the spatial coordinate η is far more convenient than θ for
particle physics. Somewhat analogous to spherical coordinates, θ ranges from 0 to π and is also called
the scattering angle, i.e. the angle with which the particle’s momentum deviates from the proton
beam axis. As such, when θ is π

2 , η is zero and effectively, when θ approaches zero, η approaches
positive/negative infinities. For proton-proton collisions where the momenta are expected to have
similar values, η tends to be symmetric about zero.

pT =
√
p2x + p2y

η = −ln(tan(
θ

2
))

φ = arctan (
py
px

)

px = pT cos(φ)

py = pT sin(φ)

pz = pT sinh(η)
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For the CNN model, the two different representations produce stark differences for some kinematic
variables.

(a) pxpypz representation (b) ptetaphi Representation

(c) pxpypz Representation (d) ptetaphi Repressentation

Figure 7: Prediction plots demonstrating the major differences between the representations

Figure 6(a) and 6(b) show that the ptetaphi representation does a much better job at predicting the
η distribution of the bottom quark than its counterpart, while Figure 6(c) and 6(d) yield the opposite
diagnosis. This time, the ptetaphi representation gives a far worse prediction for the hadronic top
φ, and these distributions are recurrent for all the other partons. This bell-shaped φ distribution
has been an intriguing issue that we have attempted to solve, mainly with the use of a custom loss
function.

4.2.4 Custom Loss Function

Previously, all trainings were done with a Mean Squared Error (M.S.E) loss function. For reasons
such as obtaining valuable insight on whether there are other available loss functions which would
help the network perform better and solving predictions issues that comes with using an M.S.E loss,
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we decided to investigate the use of the custom loss function that is in the AngryTops package and
attempt to improve it.

M.S.E =
1

N

N∑
n=1

(yn − ypn)
2

As the name suggests, the M.S.E computes the loss by finding the squared difference for each yn, the
nth truth value and ypn, the nth predicted value and summing these values before finally dividing by
N, the number of predictions. Challenges we have encountered included understanding the nature of
the input to the loss. As a means to prevent a suspected φ wrap-around issue when using the CNN
model and the ptetaphi representation, we also attempted to implement some code that would solve
this. Since we were not sure what the input to the loss was, we wrote separate custom loss scripts:
one which assumes that the input is in the Cartesian representation of the momentum (where we
would have to convert the truth and predicted values into the ptetaphi representation and calculate
the loss values), and one which assumes the input is in the ptetaphi representation already, where
only the loss values calculations and the wrap-around fix would be present. Unfortunately, though the
second option gave ’better’ predictions, they were too faulty to assume we found a proper fix. Future
investigation needs to be made on that.

4.3 Closest Jet Matching

In each tt event, each b quark results in a single jet and the hadronic W boson decays to give two
daughter jets observed in the detector response. The kinematic variables predicted by the network
should match closely to the corresponding jet momenta for each parton. As an additional measure
of network performance, we introduce a jet matching algorithm, where for each b and W , the closest
daughter jets in η − φ space are identified. This is done for a single jet for each b and for the sum of
two jets for each W . For each parton-jet pair, the distance in η − φ space is taken as

R =
√

(∆η)2 + (∆φ)2.

Here ∆η = |ηp − ηj | and ∆φ = min{|∆φp − ∆φj |, 2π − |∆φp − ∆φj |} where ηp, φp are the η and φ
momentum variables of the parton and ηj , φj those of the jet and a minimum function is taken to
account for the wraparound nature of the φ variable. This distance is calculated between a b and each
jet and between the hadronic W and the 4-vector sum jet for each possible jet pair combination for
every event. The distributions of the smallest-distance for the hadronic b and W and leptonic b are
produced below.
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(a) hadronic true (b) hadronic predicted

(c) leptonic true (d) leptonic predicted

Figure 8: Distributions of distances to closest jets for leptonic and hadronic b’s

(a) hadronic true η − φ (b) hadronic predicted η − φ

(c) hadronic true pT (d) hadronic predicted pT

Figure 9: Distributions of distances to closest jets for hadronic W ’s

From the distributions of the truth data, it is evident that the the identified closest jets lie largely
within 0.4 of the parton for b’s and 1.0 for W ’s. For the b’s in particular, the truth distribution has a
large peak at 0 with a width of around 0.4 and a long tail extending beyond 2.5. This suggests that
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only a portion of the events have a jet matched to the b, with the rest missing information about the
jets or suffering inaccuracies due to detector flaws. In comparison, the distributions for the matching
done on predicted data have a much wider peak slightly offset from 0. The proximity of the peak close
to 0 suggests that most predicted variables can in large be identified with the relevant jets and that
most predictions are consistent with input data, although the larger widths suggest that the quality
of the predictions can still be improved. For the hadronic W bosons, the difference in pT between
each W and its closest daughter jets is also determined according to the equation

∆pT = pTW
− pTj

.

The asymmetry in the pT distributions suggests quark boosting in the production production process,
which may influence predictions of the network.

The lack of matched jets in some events suggest that some events are missing information and cannot
be accurately predicted by the network. We have thus used jet matching as another criterion to make
cuts on the dataset, where we require the minimum η−φ distance to be less than 0.4 for b’s and 1.0 for
W ’s for accepted events. We term such events as having matched jets for the b’s and W . We trained
the network on datasets where only b-matching is done, only W -matching is done, and where both
b-matching and W -matching are done. After cuts were performed, roughly 4 million, 2 million, and 1.5
million events are left for the b-, W -, and b and W -matched events respectively. We found that training
on the b and W matched dataset provided a notable improvement. In particular, the pT , η, φ variables
all exhibited improvements in accuracy and training on the cut dataset appeared to have fixed the
asymmetry in top and W η. One consideration for network performance is the significant reduction
in the number of events for training and testing due to the cuts; direct comparisons of prediction
quality cannot be made to uncut datasets and predictions have potential for further improvement
with a larger dataset comparable to the original. Addionally, the performance of the network trained
on the cut dataset on uncut data is yet to be assessed. Both of these points are areas of exploration
for future investigations.
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(a) hadronic b pT uncut (b) hadronic b pT cut

(c) leptonic W η uncut (d) leptonic W η cut

(e) leptonic t φ uncut (f) leptonic t φ cut

Figure 10: Comparison of prediction plots for some kinematic variables for uncut and b andW matched
datasets trained on 1509381 events
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4.4 Cuts On The Dataset

As outlined in the Previous Work section, the initial cuts on the dataset comprised rejecting events
with jets whose pT are less than 20 GeV or events with |η| > 2.5. For our investigation, we also
made the same cuts on the truth particles. Since we hypothesized that the scaling and range of pT
possibly affects the quality of predictions, we made additional cuts, rejecting events whose jets and
truth particles’ pT are greater than 200 GeV. Since few events lie in this region, the cuts made were
logical and allowed us to see the effect of the scaling on a much smaller range of pT in the dataset.

∆ =
√

(ηjet − ηtruth)2 + (φjet − φtruth)2

Ultimately, this proved unsuccessful. We’ve only seem modest improvement as seen in Figure 7 below.
Though the χ2 values have a big difference, this is attributed to the differing sizes of the validation
dataset and they are therefore not comparable.

(a) Usual Dataset (b) Tuncated Dataset

Figure 11: Modest improvements can been seen in the leptonic b pT and this is recurrent for all other
partons

4.5 Data Augmentation

We expect that with a greater sample size for the dataset, the better the network could perform in
predicting the kinematic variables. Formerly and for much of our own training runs, our dataset
comprised 4 to 5.5 million events depending on the cuts we made.

There are two ways in which we can artificially increase the size of the dataset. First, for each event,
we can rotate the muon, jets and truth particles’ Lorentz vectors about the z-axis by an arbitrary
angle φ. The second data augmentation method consists of flipping the sign of the pseudorapidity η.
Importantly, these new events are all possible at the LHC and are thus appropriate data to feed into
the network.
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(a) (b)

(c) (d)

Figure 12: Prediction plots with (right) and without (left) data augmentation

The data augmentation performed in the above plots was a 5-times φ-rotation about the z-axis, which
effectively increase the number of events to somewhere around 19 million events. Since the size of the
validation dataset is again largely different, the χ2 are not comparable. There seems to be a marginal
improvement, if any, in the predictions. The correlation plots confirms the marginal improvement
of the results. Figure 9 shows that the correlation coefficient increase by a a hundredth with data
augmentation.
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(a) (b)

Figure 13: Correlation plots of the leptonic b pT with(right) and without(left) data augmentation

5 Conclusion

5.1 Takeaways

We investigated a new RNN architecture and several training parameters and configurations. The
CNN performed significantly better than the RNN network in almost all kinematic variables except for
those of the t. We found that data representation and number of epochs have a significant effect on the
quality of predictions, while data scaling and batch size has minimal effect on network performance.
We conclude that the network performs best when trained with minmax scaling, Cartesian represen-
taion, and at around 15 epochs. The custom loss function is still being developed but shows promise
for improving upon the currently implemented M.S.E. and resolving the φ wraparound consideration.

The newly implemented closest jets matching algorithm provided an additional metric for assessing
network prediction accuracy that improves upon the χ2 test as it is independent of the size of the
dataset and can be used even when predicted and truth data differ significantly. Using this metric,
we see that the current network performs fairly well with the greater proportion of predicted events
kinematics consistent with input jets. The closest jets matching algorithm was also used as another
metric to select events for the dataset and the network trained on the new dataset performs significant
better in almost all variables than when trained on the uncut.

Current data augmentation on φ rotation with a factor of 5 did not seem to produce any significant
improvements in the quality of the predictions when performed on the cut dataset. Additional in-
vestigations into larger augmentation factors or other data generation methods may provide further
insight.

5.2 Future Works

Possible future points of investigation are exploring additional network architectures and structure
for the current network, testing a larger augmentation factors or generating additional events, im-
plementing a proper custom loss function to resolve the φ wraparound issue, exploring additional
network parameters such as learning rate and batch size, and developing more ways of measuring the
effectiveness of predictions.
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6 Appendix

In this section, we include other relevant figures from the different sections referred in the report.

(a) minmax scaling (b) standard scaling

(c) minmax scaling (d) standard scaling

(e) minmax scaling (f) standard scaling

Figure 14: Comparison of minmax scaling and standard scaling for other kinematic variables of the
top quark
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(a) (b)

(c) (d)

Figure 15: Sample plots for the custom loss function. We see that in (a), we obtain a fairly good
distribution for the hadronic b η but (b), (c) and (d) show that the code is still buggy/not fully
understood properly. If this is fixed in the future, we could get further insights into the performance
of the neural network.
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(a) hadronic true (b) hadronic predicted

(c) leptonic true (d) leptonic predicted

Figure 16: Distributions of distances to closest jets for leptonic and hadronic b’s for b and W matched
data

(a) hadronic true (b) hadronic predicted

(c) leptonic true (d) leptonic predicted

Figure 17: Correlation plots of distances to closest jets for leptonic and hadronic b’s for b and W
matched data
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(a) hadronic true η − φ (b) hadronic predicted η − φ

(c) hadronic true pT (d) hadronic predicted pT

Figure 18: Distributions of distances to closest jets for leptonic and hadronic W ’s for b and W matched
data
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