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The precise measurement of the Higgs mass at ATLAS is a primary goal of the
current scientific programme and is an important parameter for many current and
future theoretical models and phenomenology. Concerning the H → ZZ → 4l decay
channel, an original method to arrive at a four lepton invariant mass resolution is pre-
sented, which in turn relies on an determination of the muon momentum resolution.
The accuracy of this invariant mass resolution is demonstrated. We then present the
method to form a Higgs mass estimate and its uncertainty given a signal model and
an invariant mass resolution estimate, and explore some avenues of improvement.

I. INTRODUCTION

The Higgs boson is one of the newest particles
known since its discovery in 2012, and it is critical
for its role in mass generation for the Standard
Model [2]. As it is the subject of many theo-
retical and phenomenological studies, precise in-
formation on the Higgs, in particular its mass, is
necessary. This is a current goal of ATLAS, espe-
cially with the availability of the Run 2 dataset,
collected from 2015-2018 with a center-of-mass
energy of

√
s = 13 TeV and an integrated lumi-

nosity of 139 fb−1 [1], the most statistically-rich
ATLAS dataset collected to date.

The Higgs can be produced and decay in a va-
riety of ways. Of particular interest is the H →
ZZ → 4l channel; while H → ZZ has a branch-
ing ratio of 2.6% at a Higgs mass mH = 125 GeV

[2], the production of 4 leptons means that it
forms a relatively clean and easily detectable sig-
nal to the ATLAS detector. In the present anal-
ysis, we focus on H → 4µ events.

In the detector, the transverse momentum pT ,
pseudorapidity η, and azimuthal angle φ of each
muon are measured; this information is collected
for all 4 muons and is used to calculate an in-
variant mass m4l that could then be fitted to
estimate mH . The directions (η, φ) and trans-

verse momenta (pT ) of reconstructed muon can-
didates are measured by the inner detector and
muon spectrometer of ATLAS. When calculating
the reconstructed mass observable that is used
to perform the mass measurement, the largest
contribution to the observed resolution of the
invariant mass spectrum comes overwhelmingly
from the detector’s ability to resolve the trans-
verse momentum pT , and not η and φ, of the
muon candidates. Therefore, the entire measure-
ment is limited largely by the pT resolution, and
it is important to make sure that this quantity
is determined accurately. Contrary to previous
approaches, most notably involving a neural net-
work [1], we present a novel process to determine
the muon pT resolution σ(pT ) and propagate this
value for the invariant mass calculation.

In this work, the Monte Carlo simulation sam-
ples used were generated by the POWHEG QCD
interfacing method [3] and the Pythia8 event gen-
erator [4], modelling the three data taking peri-
ods (2015-16, 2017, 2018) of Run 2, with gluon-
gluon fusion (ggH) as the production mode for
all mass points and additional vector boson fu-
sion (VBF) mode events for the 125 GeV mass
point. The mass points considered are 123, 124,
125, 126, and 127 GeV . While the MC samples
include 4e, 2µ2e and 2e2µ events, we presently
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only consider 4µ events. For the 125 GeV mass
point 4µ samples, there are around 76 events
given Standard Model predictions for the cross
section; this is also after all event-level selections.

II. EXTRACTING THE MUON
MOMENTUM RESOLUTION

Using a binning scheme presented in [1], we
bin the muon population from all 4µ MC events
into the pT − |η| parameter space.

In each bin, we plot the distribution of (ptrueT −
pT )/p

true
T and obtain a distribution. We subse-

quently fit a Gaussian to this distribution in each
bin and take the width of the Gaussian fit to be
the σ(pT )/pT value that we assign to every muon
in that bin. Multiplying by the pT of every muon,
we then obtain a muon resolution σ(pT ) value.
Figure 1 is the heatmap which shows the value of
σ(pT )/pT in each bin.

Figure 2 shows the Gaussian fit in one par-
ticular bin. The distribution in each bin is not,
however, perfectly Gaussian - hence the fit to only
a limited range in the center of the distribution.

FIG. 2: the Gaussian fit in one particular bin of
the heatmap pictured in figure 1.

III. ESTIMATING THE INVARIANT
MASS RESOLUTION

After estimating the muon σ(pT ), we must
propagate this resolution on all four muons to
form a four lepton invariant mass resolution
σ(m4l) estimate.

To estimate the m4l mass and to easily prop-
agate an uncertainty on pT , we must express m4l

in terms of the pT , η and φ of each muon. Start-
ing with

m2
4l =

(∑
i

Ei

)2

−

∣∣∣∣∣∑
i

~pi

∣∣∣∣∣
2

(1)

with i iterating over all 4 muons, E being energy
and ~p being Cartesian momentum, we realize that
in ATLAS the muon mass (order 100 MeV ) is
negligible compared to its momentum (order tens
of GeV ). Hence we assume E ≈ p = |~p| and
therefore

m2
4l ≈

(∑
i

pi

)2

−

∣∣∣∣∣∑
i

~pi

∣∣∣∣∣
2

. (2)

We can expand and simplify equation 2 to obtain

m2
4l ≈

∑
i 6=j

(pipj − ~pi · ~pj) (3)

where i, j sum over the muons - in this case they
would iterate from 1 to 4. This is not helpful,
however, because we have uncertainties on pT -
so to introduce pT into the expression, we must
use the conversion from Cartesian momentum to
accelerator coordinates: px = pT cos(φ), py =

pT sin(φ), and pz = pT sinh(η). Furthermore,

p = |~p| = pT

√
cos2(φ) + sin2(φ) + sinh2(η) =

pT

√
1 + sinh2(η) = pT cosh(η). Applying these

identities and simplifying, equation 3 takes the
form

m2
4l ≈

∑
i 6=j

pT,ipT,j (cosh(ηi − ηj)− cos(φi − φj))

(4)
which makes it easy to calculate a value for
σ(m2

4l), using a familiar method of simple error



3

FIG. 1: the heatmap used for the binned approach in determining σ(pT )/pT . For the bins at the
more extreme values of pT and η, there are very few events and consequently the fits are poor,

yielding less accurate values.

propagation, if we assume uncertainties only on
pT :

σ(m2
4l) =

√√√√∑
i

(
∂m2

4l

∂pT,i
σ(pT,i)

)2

. (5)

Figure 3 shows the distribution of σ(m4l) and
figure 4 shows the distribution of m4l calculated
using this method, from the 125 GeV MC sample.
They broadly agree with first-order expectations
of the range and peak of the distributions.

IV. VERIFYING THE INVARIANT
MASS RESOLUTION

A. Pull Plot

To check that the estimated resolution is
useful, and describes the variation in measured
masses from the detector resolution, a pull dis-
tribution is studied. It is ideal, but not necessary
that the pull distribution has a mean of 0.0 and
width of exactly 1.0. Things are complicated by
slightly non-Gaussian momentum mismeasure-
ment distributions (see figure 2), and by other

FIG. 3: Distribution of σ(m4l) calculated from
125 GeV MC.

effects such as final state radiation. A pull plot in
this case is a plot of (m4l−mtruth

4l )/σ(m4l), where
mtruth

4l is available from MC. Figure 5 shows the
pull plot.

Both the mean (∼ −0.09) and the standard
deviation (∼ 1.06) do not agree with expected
values, this disagreement surpassing the magni-
tude of their statistical uncertainties. Due to the
non-Gaussian appearance of fitted distributions
as exemplified in figure 2, we expect some sort of
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FIG. 4: Distribution of m4l calculated from 125
GeV MC.

FIG. 5: the pull plot with respect to m4l. The
fitted mean is 0.091± 0.002 and the standard

deviation is 1.056± 0.003.

discrepancy in the estimation of σ(m4l). Strictly
speaking, due to this non-Gaussian property, we
are not estimating the resolution (width) of m4l

distributions - rather, we are creating a variable
(we call "uncertainty" - σ(m4l)) that is highly
correlated with the resolution, and we use this
variable to categorize events based on them4l dis-
tribution resolution and to aid in our mass mea-
surement. While it would be preferable, the pull
plot need not be perfect; slight biases in the pull
plot parameters do not necessarily render our es-
timate inaccurate. This process then also relies
on the nature of the signal model used in the mass
meausrement (see sections V and VI) to correctly

FIG. 6: the m4l with and without a cut on
truth m4l that removes most FSR effects. Both

histograms are normalized to unity.

model the relationship between σ(m4l) and the
real resolution.

Physically, the non-Gaussian nature of m4l

distributions can be attributed to final state ra-
diation (FSR) effects, when emitted radiation de-
creases the momentum of a lepton before its de-
tection, creating a low-mass tail in the final mass
distribution. This can be demonstrated via the
125 GeV mass point MC samples, where if we
cut away the truth m4l values generated with
FSR, the measured m4l distribution becomes far
more Gaussian. Figure 6 shows the difference be-
tween the entire measured m4l distribution, and
one that has added FSR effects removed via the
cut.

B. Toy Analysis

Another way to check the error propagation
is to assume that the pT values are Gaussian-
distributed on each muon (which they are not,
but this method still verifies the process of er-
ror propagation), and sample many events from
these four Gaussian distributions on each event
to create a sample of toy events to accompany
each event.

We then create a m4l distribution of these
toy events (which should be Gaussian) and com-
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FIG. 7: a comparison between the toy m4l

width and the estimated σ(m4l) from a random
selection of 50,000 events. In agreement with

expectation, there is minimal bias.

pare its width, σ(m4l)toy, to the σ(m4l) estimate
for that event. These two values should agree,
since the width of the m4l distribution is exactly
what we are estimating when we try to propa-
gate uncertainty to m4l. Figure 7 shows a plot of
σ(m4l)−σ(m4l)

toy for 50,000 random events. The
distribution is almost unbiased, and we have ver-
ified that it narrows if we increase the number of
toy samples we use to build our toy distribution.
This agrees with expectations and shows that our
error propagation process is valid (though it does
not indicate the how good the muon σ(pT ) esti-
mate is, since we start with that value in building
the toy distribution).

V. MASS MEASUREMENT

The ultimate goal, which motivates the trou-
ble of estimating σ(m4l) by our method or an-
other, is to improve the statistical uncertainty
σ(mH) on the final mass measurement.

This can be done in many ways, and produces
a mass estimate and uncertainty that is depen-
dent on the signal model that we choose to em-
ploy. No matter the model, however, the basic
process is the same. We first conduct a global
m4l fit on the MC samples from all true Higgs

mass pointsmH (in our case, integer masses from
123-127 GeV) and establish the fit parameters of
our signal model. Fixing these parameters, on the
MC or data sample we want to measure, we allow
only mH to vary and conduct a profile likelihood
ratio scan, which establishes the optimal fit value
of mH and gives us a statistical uncertainty.

The default signal model is a double crystal
ball function fit, which consists of a Gaussian
core with power-law tails; it is often used in parti-
cle physics analysis to model lossy processes that
would feature prominent tails unsuitable for a
pure Gaussian. For this fit, the mean µDCB of
the Gaussian core is parameterized as

µDCB = a(mH − 125 GeV ) + b (6)

where a and b are parameters to be fitted. The
reasoning for this parameterization, as also de-
scribed in [1], is to model the relationship be-
tween the true mass and the mean of the corre-
spondingm4l distribution, while at the same time
trying to minimize the effect of the uncertainty
of a (hence the subtracting of 125 GeV).

Otherwise, other parameters of the fit are sim-
ply fitted in the initial global fit and then fixed
- this includes the σDCB. Note that for this sig-
nal model, we do not yet take into account the
distinct value σ(m4l) on each event. For testing
purposes, we then run this fit on the 125 GeV
mass point MC samples.

The profile likelihood ratio scan in mH in-
volves plotting the negative logarithm of the pro-
file likelihood ratio (see [1] for more on this quan-
tity) λ(mH) againstmH . Figure 8 shows this plot
for the model, as well as the estimation of the (1
standard deviation) statistical uncertainty. From
this measurement, we obtain

mH = 125.000+0.262
−0.267 GeV

for the 125 GeV mass point MC. This statisti-
cal uncertainty is dependent on our signal model,
and there are several avenues of improvement to
the signal model which may improve the statis-
tical uncertainty. We shall call the model that
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FIG. 8: a plot of − log λ against mH . The
minimum indicates the optimal value of mH ,

and the locations of intersection with
− log λ = 0.5 mark 1 standard deviation.

produced this result, with a single fitted σDCB

value, model A.

VI. MASS MEASUREMENT WITH
PER-EVENT INVARIANT MASS

UNCERTAINTIES

We explore two more models, where the pro-
cess of mass measurement is exactly the same as
before, and where the mass is parameterized as
in equation 8. The only difference is in how we
choose to model σDCB.

The first modification, which we shall call
model B, simply assigns the estimated σ(m4l) for
every event to be the sigma of the double crystal
ball fit for each event during the fits:

σDCB = σ(m4l). (7)

This is the most naive way of introducing per-
event uncertainties into the mass calculation:
σDCB is now no longer treated as a fixed value to
drop out from the fit.

The other model tested, model C, also uses
the estimated σ(m4l), but instead relates it to
σDCB in a more complicated way:

σDCB =
√
σ(m4l)2 + c2, (8)

where c is a parameter to be determined from the
fit. It is possible that the true width of the mass
distribution is described by a sum in quadrature
between the detector resolution and some true
underlying width; the parameter c is designed to
absorb any such effects.

On the 125 GeV mass point MC samples,
model B yields a mass value of

mH = 125.000+0.242
−0.253 GeV

and model C yields a mass value of

mH = 125.000+0.259
−0.256 GeV.

VII. COMPARING MODEL
PERFORMANCES

A way to test the mass measurement and its
statistical uncertainty σ(mH) is to again gener-
ate pull plots. Given the 125 GeV mass point
MC sample we did our measurement on, we ran-
domly select a subset of events and perform the
mass measurement as described in sections V and
VI, yielding a mass and statistical uncertainty.
Repeating this many times, we can build a pull
plot which plots (mH − 125 GeV )/σ(mH). If
mH overestimates 125 GeV, we use the high-side
σ(mH), and if mH underestimates 125 GeV, we
use the low-side σ(mH).

We can reasonably expect these pull plots to
have a mean of 0 and a standard deviation of 1
if the uncertainty were estimated well. Nonethe-
less, because the quality of the pull plots is also
dependent on factors like the number of events
we select in our subset to generate one mass mea-
surement, the key goal is to compare the quality
of the pull plots with respect to other signal mod-
els.

Figure 9 features the pull plots for models A,
B, and C. Table I summarizes the statistical un-
certainty for each model, and the pull plot pa-
rameters.
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(a)

(b)

(c)

FIG. 9: pull plots for models A (a), B (b) and C
(c).

We make a couple of key observations:

• model B has the best statistical uncer-
tainty, but it also has the most bias in the

pull plot mean and standard deviation -
in particular, the large standard deviation
suggests that the statistical uncertainty is
underestimated;

• model C is a definite, if slight, improve-
ment over model A, as it offers an improved
statistical uncertainty, has a much less bi-
ased pull plot mean (within statistical un-
certainty of 0), and only a slightly more
biased pull standard deviation.

We may try to partially rectify any bias in
uncertainty estimate. If a pull plot standard de-
viation is too large, it indicates that the statis-
tical uncertainty tends to be underestimated. In
particular, we may provide a correction for the
statistical uncertainty given a specific bias in the
standard deviation: if the standard deviation is
greater than 1 by x%, then we scale up the statis-
tical uncertainty by x%. These values are shown
in the "corrected" statistical uncertainty column
in table I. We should not, however, forget about
the bias in the pull plot mean that we cannot
easily correct for.

In light of these results, if we consider the
nominal (not "corrected") uncertainty, we can
conclude that assigning a per-event σ(m4l) into
the signal model appears to slightly affect the sta-
tistical uncertainty of the mass measurement. In
particular, the poor performance of model B in
the pull plot is more or less expected, as the naive
σDCB = σ(m4l) relationship defining this model
is not expected to be accurate. Model C’s per-
formance over model A is existent but marginal,
which may ask questions of the necessity of a per-
event σ(m4l).

If we assume that the "corrected" uncertainty
is a better estimate, most of our conclusions still
hold - model B still remains the best, but still
suffers from the largest bias in the pull plot mean.
Model C, again, offers an enticing compromise, as
it both improves upon the uncertainty in model A
and has (by far) the smallest bias, which is within
statistical uncertainty of 0, on the pull plot mean.
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Model
Mass & Statistical
Uncertainty [GeV]

Mass & Corrected
Statistical Uncertainty

[GeV] Pull Plot Mean
Pull Plot Std.

Deviation

A 125.000+0.262
−0.267 125.000+0.265

−0.270 −0.047± 0.010 1.013± 0.007

B 125.000+0.242
−0.253 125.000+0.257

−0.269 −0.059± 0.011 1.063± 0.008

C 125.000+0.259
−0.256 125.000+0.264

−0.261 −0.006± 0.010 1.020± 0.007

TABLE I

Ultimately, we observe that the inclusion of
per-event σ(m4l) values in our signal model has
a small but still improving effect on the statis-
tical uncertainty of the mass measurement. We
also see that varying the signal model has po-
tential to improve the measurement, or to reduce
bias in our pull plot analysis. Keep in mind, how-
ever, that our test of only three models is far from
comprehensive, and these conclusions should be
taken as indicative, not definitive.

VIII. CONCLUSIONS

In this work we constructed a way to estimate
a per-event σ(m4l) and demonstrated its valid-
ity; using this, we explored some signal models to
help formulate a mass measurement and its un-
certainty. We found that the uncertainty is likely
improved by the consideration of the per-event
invariant mass resolution estimate.

These results will hopefully be part of the
larger ATLAS initiative to form the most pre-
cise measurement ever of the Higgs mass. While
our analysis was centered on a particular set of
Monte Carlo samples, the way we have tested re-
sults relative to each other and the robustness of
the per-event invariant mass resolution estima-
tion leads us to be confident that this work is
applicable for other data.

Finally, there are several logical extensions to
this work. They include

1. performing the same analysis, and verify-
ing its efficacy, using the other 4l channels
(4e, 2µ2e, 2e2µ) and eventually combining
them for a consolidated measurement,

2. probing further improvements to the sig-
nal model used to make the mass mea-
surement, likely by exploring other ways
in which σDCB may be related to σ(m4l),

3. and improving the muon momentum res-
olution, by improving the heatmap (fig-
ure 1) or modelling the non-Gaussian-ness
of the distribution in its bins, which may
likely improve our mass estimate statistical
uncertainty.
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