
PyTorch Neural Networks and Track Analysis
for Top Quark Tagging

Genevieve Hayes1,2,3 Colin Gay2,3 and Alison Lister2,3

1 Department of Engineering Physics, Queen’s University, Kingston, Canada
2 Department of Physics, University of British Columbia, Vancouver, Canada
3 European Organization for Nuclear Research (CERN), Meyrin, Switzerland

Abstract. The identification of top quarks is motivated by their high
mass and strong coupling to the Higgs mechanism. Boosted top quarks
also allow for improved measurements of the Standard Model in the high
momentum tails of event feature distributions. Neural networks have
been proven as an effective method for distinguishing top quarks from
Quantum ChromoDynamic (QCD) events using jet constituent features
from the ATLAS and CMS calorimeters. In this project Deep Neural Net-
works (DNN’s) and Long Short-Term Memory (LSTM) networks were
built in PyTorch to compare their performances to previously tested
Keras models. After applying similar preprocessing and optimization
techniques, the performance of the PyTorch models was found to be
highly comparable to the Keras models. Track features from the inner
tracker offer promising new information to improve the performance of
top tagging neural networks by utilizing information typically used in
b-jet identification. Track features were analyzed and incorporated in
processing scripts used to prepare the data for input to neural networks.
It was found that keeping 100 pT ordered tracks with pT greater than 1
GeV could retain relevant information for jet classification while mini-
mizing noise and computing time.

Keywords: Top Quark Tagging · Deep Neural Networks · LSTM Neural
Networks · Track Analysis · ATLAS

1 Introduction

Top quarks are the heaviest fundamental particle that has been discovered,
weighing almost as much as an atom of gold. Since top quarks do not hadronized
before they decay, they are also the only quarks whose spin and charge quantum
numbers can be measured directly. Because top quarks are abundantly produced
at the LHC, a clear understanding of top signals is imperative to build an ac-
curate model of the physics occurring within the detector. The most common
decay chain of the top quark is presented in the Feynman diagram in Figure 1.
In this project the hadronic decay channel of the W boson is of interest.



2 Genevieve Hayes Colin Gay and Alison Lister

Fig. 1: Top quark decay into W boson and b quark.

Historically, standard jet algorithms have been used by ATLAS and CMS to
seperate top quarks from quantum-chromodynamic (QCD) background arising
from light quarks and gluons. These typically relied on the identification of three
separate jets. At high momentum the decay products become so collimated it
is more effective to use a single larger radius jet collecting all decay products
of the top, so called boosted top jets. The first algorithms to identify boosted
top jets relied on the computation of high-level quantities derived from physics
knowledge. More recently, various types of neural networks, mostly built us-
ing the Keras platform, have been shown to successfully classify jets based on
calorimeter information.

PyTorch is a deep learning framework that offers a promising alternative to
Keras due to its increased flexibility, short training durations and debugging
capabilities. PyTorch has also been shown to work well for high performance
models and large datasets that require fast execution which is well suited to
top tagging [4]. The first part of this project was the development of Deep
Neural Networks (DNN’s) and Long-Short Term Memory (LSTM’s) networks
in PyTorch for top tagging. The inputs to the models consisted of 4-vector
kinematic information which was separated into training, validation and testing
datasets. Each dataset was preprocessed to remove nonrelevant parameters and
to improve training efficiency [8].

The second part of this project looked at improving upon these methods,
considering complementary information from the inner tracker in parallel with
the calorimeter features to improve the performance of the top tagging neural
networks. The inner tracker of the ATLAS and CMS detectors measures the
direction, momentum and charge of electrically-charged particles produced from
pp collisions in the LHC, consisting mostly of charged pions and leptons [1].
Most frequently each of the pair-produced top quarks (tt̄) decay into a W boson
and a bottom (b) quark via t → bW followed by both W bosons decaying into
a quark-antiquark (qq̄) pair. The detection of the b-hadron with the top jet,
using its measurable displacement from the primary vertex when it decays is
hypothesized to improve neural network based top jet identification. For this
purpose, pre-existing python scripts used to interpret and transform Delphes



PyTorch Neural Networks and Track Analysis for Top Quark Tagging 3

simulated jets have been updated to incorporate track features for suitable input
to the neural networks.

2 Introduction to Neural Networks

Neural networks are computer models that learn algorithms without being ex-
plicitly programmed, loosely based on the structure of the brain. They are ver-
satile models that can learn from high volumes of complex data, making them a
great option for top tagging. Another advantage of using this technique is that
high level features do not need to be calculated, instead the network determines
discriminants by observing low level features of the detectors.

2.1 Deep Neural Networks

A DNN is a neural network with more than one hidden layer, where each layer is
comprised of nodes. In standard DNN’s the connections between nodes consist of
linear weights and biases which are optimized during training. Mathematically,
the connections between nodes can be written as

yj = Θ(wjxj + b) (1)

where Θ is the activation function of the layer such as ReLu, sigmoid and
softmax functions which adjust the inputs to the nodes. Back-propagation is
used to compute the gradient descent with respect to weights, compare it to the
desired outputs and then tune the model to minimize the loss function [7].

2.2 LSTM Networks

LSTM neural networks are Recurrent Neural Networks (RNN) with extended
memory capabilities. RNN’s work very well when analyzing sequential data due
to an internal memory which allows the network to utilize information about
previous entries to influence the weighting of the current output. In the case of
an LSTM, this controls how the network reads, writes and deletes information.
LSTM’s solve problems such as exploding and vanishing gradients which can
occur when the gradients either become very large (explodes) or very small
(vanishes) when back-propagating through time [9].

2.3 Performance Evaluation

A common way of accessing the performance of neural networks is to use Receiver
Operating Characteristic (ROC) curves which illustrate the background rejection
as a function of signal efficiency. The background rejection and top tagging
efficiency are defined as follows:

Background Rejection =
1

fpr
(2)



4 Genevieve Hayes Colin Gay and Alison Lister

Top Tagging Efficiency = tpr (3)

where fpr is the false positive rate and tpr is the true positive rate. The
Area Under the Curve (AUC) is then equal to the probability that the neural
network will rank a randomly chosen signal event higher than a randomly chosen
background event.

3 PyTorch Neural Networks with Jet Constituent Inputs

3.1 Dataset

The dataset used for training and evaluating the neural networks is the “Top
Tagging Reference Dataset” provided by G. Kasieczka [2]. Kasieczka’s dataset
consists of 1.2M training events, 400k validation events and 400k test events
simulated using Pythia8 [10] at centre-of-mass

√
s = 14 TeV. Each of the sets

contain equal numbers of top quark signal and mixed quark-gluon background
jets with each jet constituent defined by the 4-vector (px, py, pz, E). The detector
response was incorporated into the features using the Delphes suite [6] with the
ATLAS detector card. Jets are clustered using the anti-kT algorithm with R =
0.8. Only jets within the pT range of 550 to 650 GeV were included. Multiple
interaction and pile-up were excluded. A complete description of the dataset can
be found in Reference [2].

It was previously found that an input of 30 jet constituents saturated Keras
DNN performance, therefore only 30 jet constituents with the largest pT were
input into the PyTorch neural networks.

3.2 Neural Network Architecture

The DNN and LSTM models were both built in PyTorch. Preprocessing was
applied to the 4-vectors of the Kasieczka dataset and the input layer of the
networks consists of a sequence of (pT , η, φ) describing the constituents within
each jet. The five-step procedure consists of transformation, scaling, translation,
rotation and flipping. The rationale behind this preprocessing is to prevent the
DNN from learning the symmetries of space-time so it can more efficiently learn
relevant discriminating features between signal and background [8]. It was found
to improve the network performance significantly and reduce the computation
time required for training and testing [8].

The first networks built were single layer feed-forward neural networks with
large batch sizes and few epochs. These models evolved into DNN’s by adding
more dense layers. The best performing DNN consisted of and input layer with
90 nodes and 4 hidden layers with 300, 102, 12 and 6 nodes per layer before the
final binary output layer. ReLu activation functions were applied throughout
the hidden layers and the network was trained with the ADAM optimizer for a
maximum of 20 epochs with a batch size of 96 and a learning rate of 0.001 to



PyTorch Neural Networks and Track Analysis for Top Quark Tagging 5

minimize the cross-entropy loss. A batch size of 96 and a learning rate of 0.001
were used with the softmax activation function applied at the output layer.

Motivated by previously demonstrated improvements in background rejection
in top tagging, a number of LSTM neural networks were also built in PyTorch.
The addition of dense layers to the LSTM showed the greatest improvement in
AUC. The best performing LSTM consists of an LSTM layer with 128 nodes fol-
lowed by 2 fully-connected layers with 64 and 32 nodes respectively and a binary
output layer. As with the DNN, the cross-entropy loss function was minimized
using the ADAM optimizer with ReLu activation functions for the hidden layers
and Softmax on the output later. A batch size of 96 was used with a learning
rate of 0.001 for up to 20 epochs.

Parameters such as the learning rate, batch size, number of nodes per hidden
layer and number of epochs were varied to explore their effect on the efficiency,
accuracy and AUC. While overtraining was apparent in both the DNN and
LSTM loss curves, neither L1 nor L2 regularization improved the network per-
formances. L1 regularization still shows promise of further minimizing the loss
function with more training epochs.

It should be noted that while the obvious parameters in successful Keras
DNN structures were matched, there are default settings that are likely to differ
between the Keras and PyTorch models.

3.3 Neural Network Performance Comparison

The validation data was used throughout training to ensure that the model was
improving and not overtraining between epochs, but the overall PyTorch per-
formance was tested after all epochs were completed on an independent test
dataset. The PyTorch LSTM, PyTorch DNN and Pearkes’ Keras DNN perfor-
mances were tested separately on the test data.

The ROC curves of the best performing PyTorch DNN, Keras DNN and
PyTorch LSTM are presented in Figure 2 [8][2].

Many more architectures have yet to be explored which could include changes
in the optimizer, tuning of the batch size and the number of neurons. An increase
in the background rejection of both the PyTorch and Keras LSTM’s by a factor
of 2 at high signal efficiencies in compared to the DNN’s is apparent. The per-
formance of the neural networks developed using PyTorch is highly comparable
to those developed using Keras.

4 Incorporating Tracks

Jet constituent information only contains kinematic information, not informa-
tion from particle-level charge or distance of closest approach to the primary
interaction. Tracks from the inner tracking detector may be able to fill this gap
by providing information regarding the displaced secondary vertices from decays
of b-hadrons for better top quark identification. For this reason, track informa-
tion from the detection of charged particles was analyzed and prepared for neural
network training.



6 Genevieve Hayes Colin Gay and Alison Lister

Fig. 2: ROC curves of the best performing PyTorch DNN, Keras DNN and Py-
Torch LSTM. Each model is presented with its respective Area Under the Curves
(AUC).

4.1 Dataset

The dataset used to combine jet and track information is the same used for
the development of jet constituent based Keras DNN’s [8]. Sequential Standard
Model Z’ boson signal events were simulated using Pythia8 [10] at centre-of-
mass

√
s= 13 TeV with pole masses ranging in 32 steps from 1400 to 6360 GeV.

The detector response was incorporated into the features using the Delphes suite
[6] with the CMS detector card. Hard QCD dijet processes are incorporated by
using mixed quark-gluon background events with traverse momentum between
470 and 2790 GeV. Inelastic and non-diffractive soft jets are also generated. A
complete description of the dataset can be found in Reference [8].

4.2 Technical Implementation

Event simulation in the Delphes framework generates root files which require
classification, merging, subsampling and preprocessing to become inputs into
PyTorch neural networks.

Each root file contains features from a large number of simulated events, all
stored in TTree structure. The TTree contains branches such as tracks, jets and
jet constituents and leaves which consist of the features corresponding to each
of these branches. The structure can be viewed using TBrowser in root.

The branches are loaded into process events wtracks.py at the bottom of the
script in the function process events wtracks(file name, directory name) as the



PyTorch Neural Networks and Track Analysis for Top Quark Tagging 7

variable “t”. “branchJet” is the pointer to the jet branch and “branchTrack” is
the pointer to the track branch.

To ensure that the location of the first track feature is at the same loca-
tion for each z jet numpy array, cutting and zero padding is applied to the jet
constituents. The distributions for the number of jet constituents in each jet is
presented in Figure 3 for both signal and background jets.

Fig. 3: Normalized distribution of the number of jet constituents within each
signal jet (blue) and background jet (red).

4.3 Properties of Tracks Within Jets

Over 10000 events, the maximum number of jet constituents per jet was found to
be 421. However, as illustrated in Figure 3, the vast majority of the jets have less
than 300 jet constituents. For this reason, a maximum of 300 jet constituents
is saved for each jet resulting in 1200 jet constituent features (pT , η, φ and
Reduction flag for each jet constituent). Jets that contain fewer than 300 jet
constituents are zero padded up to 1200 features.

Within the function get associated tracks(), tracks that are within a dR of
1.0 of a jet are matched to that jet, where dR is defined as

dR =
√
dφ2 + dη2 (4)

and dφ and dη are the difference between the φ and η of the jet and the track
respectively. The transverse momentum (pT ), azimuthal angle (φ), pseudorapid-
ity (η), transverse impact parameter (d0) and longitudinal impact parameter
(dZ) for each track are saved.

The tracks are then sorted in order of descending pT , so that the 5 track
features corresponding to the track with the highest pT are the first 5 elements
of y jet 300 and so on. Normalized distributions of the number of tracks within



8 Genevieve Hayes Colin Gay and Alison Lister

signal and background events are presented in Figure 4 without any track pT
cut and with track pT cuts at 1 GeV, 2 GeV and 10 GeV.

Fig. 4: Normalized distribution of the number of tracks per jet for signal events
(solid line) and background events (dashed line) without a track pT cut (violet)
and with track pT cuts at 1 GeV (blue), 2 GeV (green) and 10 GeV (red).

On average, about 80% of the tracks within a jet have a pT less than 1
GeV and over 90% have a pT less than 10 GeV. Since low pT tracks carry little
relevant information for jet classification, a 1 GeV pT cut on the tracks was made
to minimize irrelevant inputs and reduce computing resources. The distributions
for the fraction of track pT carried by the highest-pT track, the sum of the highest
3 pT tracks and the sum of the highest 10 pT tracks for signal and background
jets are presented in Figure 5.

On average, the 10 highest pT tracks appear to carry over 50% of the pT of
the jet. The average pT fraction is defined as

∑n
i tracki pT
jet pT

(5)

where track pT is ordered from highest to lowest and is plotted from n=1 to
n=100 in Figure 6.



PyTorch Neural Networks and Track Analysis for Top Quark Tagging 9

Fig. 5: Distribution of
∑n

i tracki pT / jet pT carried by the highest-pT track
(n=1, red), the sum of the highest 3 pT tracks (n=3, green) and the sum of the
highest 10 pT tracks (n=10, blue). Signal jets and background jets are presented
with solid and dashed lines, respectively.

Fig. 6: Average pT fraction,
∑n

i tracki pT / jet pT as a function of n including
the highest pT track (n=1) up to the sum of the 100 highest pT tracks (n=100).
Standard deviations of the distributions are presented as error bars.

An average of 70% of the jet pT is contained in the highest 100 pT tracks.
This is expected to be enough tracks to contain the relevant information about



10 Genevieve Hayes Colin Gay and Alison Lister

the jet, therefore only using the highest 100 pT tracks is hypothesized to be
sufficient for neural network training and testing.

Within the function create vector delphes(), the numpy array z jet is built for
each jet by concatenating 20 jet features (x jet), the 4-vectors from 300 jet con-
stituents (y jet 300) and 5 track features from the highest 100 pT ordered tracks
(y track sorted 100). The z jet for each jet is output in a numpy file. Another
root file is also generated which contains a number of histograms illustrating key
features of the jets, jet constituents and tracks.

5 Next Steps

Now that the top and jet matched numpy arrays have been created, accompanied
by diagnostic histograms for the track analysis, the next steps are as follows:

1. Merge and weight numpy arrays of the same type.
2. Extract flat pT distributions from signal and background jets.
3. Preprocess tracks to match jet constituent translation, rotation and scaling.

While there is no obvious benefit of applying the rotation and scaling on
tracks as is done for the clusters, the network performance both with and without
preprocessing should be studied. In particular the hope is that the additional
information contained in the tracks would be more focused on reconstructing
displaced vertices than on the image-like properties of the calorimeter. Once
all of this preprocessing has been completed, one possibility for incorporating
the tracks is to input the track features to a neural network separate from the
jet constituent neural network. An illustration of this workflow is presented in
Figure 7.

Fig. 7: Workflow for the parallel incorporation of calorimeter information and
tracking information for top quark tagging.

Using a Cluster LSTM shows promising results for the calorimeter informa-
tion neural network [5]. For the tracking information, a variety of neural network
structures may prove to be successful, but a DNN or LSTM is a good place to
start to benchmark the effect of adding tracking features [3].



PyTorch Neural Networks and Track Analysis for Top Quark Tagging 11

6 Conclusion

Jet constituent based neural networks have been demonstrated as effective meth-
ods for distinguishing top quark jets from background jets. DNN’s and LSTM
networks were built in PyTorch for the purpose of differentiating top quark jets
from QCD background jets. The inputs to the models consisted of preprocessed
kinematic information which was separated into training, validation and test-
ing datasets. Both networks demonstrated performance highly comparable to
previously developed Keras models. Notably, the LSTM performance marked a
two-fold increase in background rejection at high signal efficiency compared to
the DNN performance.

Tracking features were included into preprocessing scripts motivated by the
displacement of the top quark’s b-jet from the primary vertex. It was found
that adding 100 tracks with transverse momentum above 1 GeV could provide
sufficient information to be incorporated into a neural network to contribute
towards top quark tagging.

7 Acknowledgements

I would like to express my gratitude to the Institute of Particle Physics (IPP),
the Natural Sciences and Engineering Research Council of Canada (NSERC),
the University of British Columbia (UBC), and the European Organization for
Nuclear Research (CERN) for sponsoring this research project. I would also like
to thank my amazing supervisor, Alison Lister for her continual support and
guidance, no matter the time zone. Finally, a very special thank you to Robin
Newhouse and Jannicke Pearkes for all of their help, patience and mentorship
throughout this project.

References

1. Aad, G., et al.: Performance of b-Jet Identification in the ATLAS Experiment.
JINST 11(04), P04008 (2016). https://doi.org/10.1088/1748-0221/11/04/P04008

2. Butter, A., et al.: The Machine Learning Landscape of Top Taggers. SciPost Phys.
7, 014 (2019). https://doi.org/10.21468/SciPostPhys.7.1.014

3. Di Bello, F.A.: Optimisation of the ATLAS b-tagging algorithms for
the 2017-2018 LHC data-taking. PoS EPS-HEP2017, 733 (2017).
https://doi.org/10.22323/1.314.0733

4. Edureka: Keras vs tensorflow vs pytorch — deep learning frameworks (2018),
https://blog.exxactcorp.com/tensorflow-vs-pytorch-vs-keras-for-nlp/

5. Egan, S., Fedorko, W., Lister, A., Pearkes, J., Gay, C.: Long Short-Term Mem-
ory (LSTM) networks with jet constituents for boosted top tagging at the LHC.
https://arxiv.org/abs/1711.09059 (2017)

6. J. de Favereau et al.: Delphes 3 collaboration. Cornell University (2014).
https://doi.org/10.1007/JHEP02(2014)057, https://arxiv.org/abs/1307.

6346v3

https://doi.org/10.1088/1748-0221/11/04/P04008
https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.22323/1.314.0733
https://blog.exxactcorp.com/tensorflow-vs-pytorch-vs-keras-for-nlp/
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346v3
https://arxiv.org/abs/1307.6346v3


12 Genevieve Hayes Colin Gay and Alison Lister

7. Jain, A.K., Jianchang Mao, Mohiuddin, K.M.: Artificial neural networks: a tutorial.
Computer 29(3), 31–44 (March 1996). https://doi.org/10.1109/2.485891

8. Pearkes, J., Fedorko, W., Lister, A., Gay, C.: Jet Constituents for Deep Neural
Network Based Top Quark Tagging. https://arxiv.org/abs/1704.02124 (2017)

9. Sundermeyer, M., Ney, H., Schlüter, R.: From feedforward to recurrent lstm neural
networks for language modeling. IEEE/ACM Trans. Audio, Speech and Lang. Proc.
23(3), 517–529 (Mar 2015). https://doi.org/10.1109/TASLP.2015.2400218, https:
//doi.org/10.1109/TASLP.2015.2400218

10. T. Sjöostrand et al.: An introduction to pythia 8.2. Cornell University (2015).
https://doi.org/10.1016/j.cpc.2015.01.024, https://arxiv.org/abs/1410.3012

https://doi.org/10.1109/2.485891
https://doi.org/10.1109/TASLP.2015.2400218
https://doi.org/10.1109/TASLP.2015.2400218
https://doi.org/10.1109/TASLP.2015.2400218
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012

	PyTorch Neural Networks and Track Analysis for Top Quark Tagging

