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1 Introduction

The ATLAS experiment at the LHC is a general-
purpose particle physics detector used to study pp

collisions at
p
s = 13TeV. The two main types of

particles produced in the initial hard scatter are
quarks and gluons, collectively called “partons”.
Since partons cannot exist in an isolated state,
they will quickly decay into stable hadrons in the
showering and hadronization process. This results
collimated sprays of hadrons known as jets. One
of the challenges faced by the ATLAS collabora-
tion is to understand the type of particle which
initiated a jet, given its signature in the trackers
and calorimeters.

A jet in ATLAS simulations has multiple levels.
A jet is called “parton-level” before it hadronizes
and “hadron-level” after it hadronizes. The jet is
then simulated as it enters the ATLAS calorime-
ters, and the energy depositions are grouped into a
“reco-level” jet. We are interested in the detector
response, or jet energy scale (JES), which is de-
fined as the ratio of reco jet transverse momentum
to truth jet transverse momentum p

reco

T

/p

truth

T

.
This quantity measures the fraction of the en-
ergy of a jet which is captured in the calorimeters.
There have been many previous e↵orts to under-
stand the JES [1, 2].

It has been observed that jets initiated by di↵er-
ent partons have di↵erent average responses. This
is known as the JES flavour uncertainty. To prop-
erly correct for this e↵ect, it is useful to be able to
identify each jet with the parton which initiated
it. At hadron-level, jets initiated by gluons and by
light quarks (u, d, s) can be distinguished only by
properties such as jet width and number of con-
stituent hadrons; quark jets are typically narrower
and have fewer constituents than gluon jets. Iden-
tifying quark and gluon jets based on their prop-
erties at hadron-level is the topic for my project.

Jets are currently labelled by the highest p
T

par-

ton in their volume at parton-level. However, this
is not ideal for a number of reasons. Partons are
not stable, and so their properties are unphysical.
There are a number of di↵erent Monte Carlo (MC)
generators which are used to simulate the parton
showering and hadronization, and the way they
handle parton-level information can be very dif-
ferent. Relying on unphysical parton-level infor-
mation will introduce a large dependence on the
MC generator used.

The goal of this project was to classify jets based
on physical hadron-level topology, without using
unphysical parton-level information. This classi-
fier should take jet properties at hadron-level as
input, and should output a value from �1 to +1
depending on how “quark-like” or “gluon-like” the
hadron jet is. The relationship between the clas-
sifier and the JES was then studied.

This project is described in further detail in a
full length report [3], which includes more techni-
cal information and results, and additional studies
performed for this project.

2 Input variables

Following a literature search and discussions with
Benjamin Nachman and Dag Gillberg, a total of
13 hadron level variables were identified as being
potentially good quark/gluon discriminants.

1. n

const

: The number of constituents (stable
hadrons) within a jet volume.

2. m/p

T

: The total mass of all jet constituents
divided by the total jet p

T

.

3. Width: The width of the jet.

w =

P
i pT,i ⇥�R(i, jet)P

i pT,i

4. p

T hardest

/p

T

: The fraction of jet p

T

carried
by the highest p

T

constituent in the jet.
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5. p

T charged

/p

T

: The fraction of jet p

T

carried
by charged constituents.

6. p

T photons

/p

T

: The fraction of jet p

T

carried
by photons. This includes photons decaying
from unstable hadrons, such as ⇡0 ! ��.

7. Charge: The total charge of the jet, weighted
by p

0.5
T

.

q =

P
i qi ⇥ p

0.5
T,iP

i p
0.5
T,i

8. N

e↵

const

: An e↵ective number of constituents.

N

e↵

const

=
(
P

i pT,i)2P
i p

2

T,i

N

e↵

const

! 1 when all p

T

is carried by one
constituent, N e↵

const

! n

const

when p

T

is split
equally among constituents.

9. p

T

D: The jet energy sharing value used by
CMS.

p

T

D =

qP
i p

2

T,i
P

i pT,i

p

T

D ! 1 when all p
T

is carried by one con-
stituent, p

T

D ! 0 when p

T

is split among
infinitely many constituents [4]. These two
variables are related by N

e↵

const

= (p
T

D)�2.

10. C(�): Energy-energy-correlation (EEC) an-
gularity [5].

C(�) =

P
i

P
j pT,i ⇥ p

T,j ⇥ (�R(i, j))�

(
P

i pT,i)2

Three di↵erent � values were used: 0.2, 1.0,
and 2.0.

11. N

90: The minimum number of constituents
which carry 90% of the jet p

T

.

Classifiers were trained on two di↵erent sets of
input variables. One classifier was trained on the
full set of 13 input variables. A second classifier
was trained on a subset of 8 input variables. The
selection of these 8 variables will be described in
the following section.

3 Input variable usefulness

Three di↵erent metrics were used to gauge the use-
fulness of each input variable.

The first is the separation of the quark and
gluon input variable distributions. Given two
classes of data, called signal and background, we
define the separation of their distributions ŷS and
ŷB in a variable y as:

hS2i = 1

2

Z
(ŷS(y)� ŷB(y))2

ŷS(y) + ŷB(y)
dy

This separation takes a value of 0 when the two
distributions are identical, and 1 when there is no
overlap in the distributions.

In our case, quark jets were chosen to be the
signal, and gluon jets to be the background. The
separation of each input variable is shown in Fig-
ure 1.

Figure 1: Quark/gluon separation of the 13 input
variables.

The second metric which was examined is the
signal e�ciency at 80% background rejection. To
find this, a cut is made on the input variable and
only events to the left (or sometimes right) of
this cut are kept. The cut is made at the value
such that 80% of the background distribution is
rejected. The same cut is then made on the sig-
nal distribution, and the fraction of events which
pass the cut is called the signal e�ciency. The sig-
nal e�ciency at 80% background rejection of each
input variable is shown in Figure 2.

Using these two metrics, we see that all variables
grow in power at higher p

T

. The weakest variables
are p

T photons

/p

T

, p
T charged

/p

T

, and charge, while
the strongest variables are C(0.2), n

const

, N90, and
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Figure 2: Variable signal e�ciency with 80% back-
ground rejection.

N

e↵

const

. It also shows that N e↵

const

and p

T

D are re-
dundant as expected, and also that n

const

and N

90

are redundant. There is also some systematic ef-
fect at work which is producing a dip at 120 GeV
for most of the variables. This e↵ect is not cur-
rently understood.
Finally, the correlation between each of these

input variables was also studied. Consider mul-
tiple copies of the strongest variable; they would
all have high separation and signal e�ciency, but
would not give any new information. This is re-
flected by the linear correlation factors. The linear
correlation factors between the input variables, as
well as the kinematic variables p

T

and ⌘, are given
in Figure 3.
A second classifier was trained on the 8 input

variables which were deemed to be the most im-
portant. The variables m/p

T

, p
T

D, N90, C(1.0),
and C(2.0) were chosen to be dropped as they are
highly correlated with other variables, and have
the lower separation and signal e�ciency than the
variables they are correlated with.

4 Classifier training

A classifier is a function which takes values for
each of the input variables and returns a value
between �1 and +1. It is trained using two classes
of data, signal and background. An output close to
�1 means an event is very similar to a background
(gluon) event, while an output close to +1 means
the event is very similar to a signal (quark) event.
As well as training classifiers on two di↵erent

sets of input variables, two di↵erent MVAmethods

Figure 3: Input variable linear correlation coe�-
cients in Pythia at 20 < pT < 30 and 190 < pT <

240 respectively.

were also used, leading to a total of four classifiers
being trained. A separate classifier was trained for
each p

T

bin. The bins used are 20-30, 30-45, 45-65,
65-95, 95-140, 140-190, and 190-240 GeV. In the
future, these classifiers could be merged together
in a continuous fashion to create a classifier which
works across any p

T

.
Dijet samples from Pythia, Herwig, and Sherpa

were used for training. The di↵erence between
generators was studied but will not be addressed
here. Only the leading and subleading jets in a
central ⌘ region were used. On average about
60000 background events and 15000 signal events
were used for training.

The two MVA methods used were Boosted De-
cision Trees (BDT) and Fisher discriminants. A
BDT is composed of a series of nodes in a tree-like
pattern. At each node, the data is split into two
groups according to a cut on the input variable
which o↵ers the highest separation. Each group is
passed on to a new node. The ending nodes, or
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leaves, are then labelled as either signal or back-
ground. A Fisher discriminant is a lot simpler; it is
simply a linear combination of all input variables,
where coe�cients are determined by training:

yF (i) = F

0

+
nvarX

k=1

Fkxk(i)

5 Classifier power

The classifiers are trained such that they will max-
imize the separation between the output distribu-
tions for signal and background. As such, the
power of a classifier can be judged in the same
manner as the power of a variable; namely, us-
ing separation values and signal e�ciency at fixed
background rejection. The separation of the clas-
sifiers is shown if Figure 4 and the signal e�ciency
at 80% background rejection is shown in Figure 5.

Figure 4: Separation of four MVA classifiers
trained on Pythia.

Firstly, despite being simpler, the Fisher clas-
sifiers almost universally outperform the BDTs.
This is unexpected and could be explained by in-
su�cient training data.
Secondly, it can be seen that by excluding the

five weakest and most correlated variables, some
power is lost in the classifier. Further study should
be performed into which of the input variables can
be dropped with no loss of classifying power.
Finally, the classifiers are not so much more

powerful than the strongest input variables,
C(0.2) and n

const

. This suggests that using a clas-
sifier may not be necessary; perhaps a simple cut
on C(0.2) or n

const

could be used instead as a
hadron-level quark/gluon classifier.

Figure 5: Signal e�ciency of four MVA classifiers
trained on Pythia at 80% background rejection.

6 Relationship with JES re-

sponse

The response R = p

T reco

/p

T truth

of quark jets is
significantly higher than that of gluon jets, and
understanding this discrepancy is one of the mo-
tivations for this project.

Instead of a binary label of “quark” or “gluon”,
a classifier gives each jet a continuous value from
+1 (“quark-like”) to �1 (“gluon-like”). Thus it is
reasonable to hope that the classifier output value
should be monotonically related to the average re-
sponse. Figure 6 shows that this is indeed the case.
The relation is in fact very linear, which gives a
good indication that the “quark-gluon axis” de-
fined by the classifiers is the same axis in our vari-
able space which determines the response o↵set.

Figure 6: Average response of jets with with a
certain classifier output.
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Another way of seeing this is to split the data
into four quartiles of classifier output, such that
the first quartile represents the most “gluon-like”
events, and the fourth quartile represents the most
“quark-like” events. The response of these two
data classes are plotted in Figure 7, alongside
the response of the pure quark and gluon parton-
labelled classes.

Figure 7: Response of jets with quark/gluon par-
ton label and quark/gluon-like classifier output.

It is interesting that the average response for
jets in the most gluon-like classifier quartile is
lower than for jets with the gluon parton label, and
the average response for jets in the most quark-like
classifier quartile is higher than for jets with the
quark parton label. This means that the classifier
is doing a good job at highlighting the response
di↵erence between quarks and gluons.

7 Further work

Some further studies were also performed on this
project which are not discussed here. These in-
clude insight into the generator dependance of the
classifiers, by testing and training using data from
di↵erent MC generators. Preliminary results indi-
cate that this method is not able to fully remove
the dependance on the MC generator used. Some
initial investigations into other methods which
could avoid this generator dependance were also
carried out. These include using an MVA regres-
sion directly on the JES response, and using unsu-
pervised learning methods such as CWoLa [6] and
topic modelling[7]. The results of these studies,
and some more technical details of this project,
are described in the full report [3].

8 Conclusions

For the purpose of studying the JES flavour un-
certainty, it is useful to have a method of tag-
ging jets as quark-initiated or gluon-initiated at
hadron-level. This should not depend on unphysi-
cal parton-level information which introduces un-
wanted dependance on the MC generator. Using
TMVA, classifiers were trained on the parton la-
bel using a number of hadron-level input variables.
These classifiers were able to achieve a signal e�-
ciency of up to 75% at a background rejection rate
of 80%. This is slightly higher than the strongest
input variable.

Both a Fisher discriminant and BDTs were
trained. The Fisher discriminant was found to be
as powerful as the BDTs. Since it is much simpler
to understand in terms of an axis in hyperspace,
and simpler to train, the Fisher method should be
preferred in the future.

The classifiers trained were shown to have a
strong dependence on the average JES response.
The “quark-like” and “gluon-like” classes of jets
coincide very well with the high response and low
response classes of jets.
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