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Abstract

Neural networks provide an attractive alternative to traditional top tagging methods, as the learned
tuning of network parameters may identify subtle distinguishing patterns that high-level quantum
chromodynamics (QCD) motivated variables (such as N-subjettiness, τ32 or jet mass) cannot capture at
high transverse momentum (pT). Our previous work investigated the approach of feeding jet information
to a Dense Deep Neural Network (DNN) as a flat, ordered list of jet constituent four-momenta. Given
how naturally the constituents can be arranged as sequences of various orderings, for example by subjet or
by pT , this problem lends itself well to the use of Long Short-Term Memory (LSTM), a machine learning
method useful for treating sequences and learning long range patterns in data. We thus explore neural
networks which incorporate Long Short-Term Memory (LSTM) layers. Here we present results for boosted
top tagging using various network architectures, ordering of jet constituents, and input properties such as
trimming and pileup. Our best performing LSTM network achieves a background rejection of 101 for 50%
signal efficiency. This represents more than a factor of two improvement over the Dense DNN, which
yields a background rejection of 45 at the same signal efficiency.

I. Introduction

Figure 1: Feynman diagram of a
top quark decay.

The top quark’s exceptionally high mass and strong coupling
to the Higgs mechanism have long made it an important sub-
ject for probes of the Standard Model (SM) [1]. In addition to
this, several theory extensions to the SM predict new particles
decaying to or being produced in association with "boosted"
top quarks, which carry a transverse momentum (pT) much
greater than their rest mass. Such theories include the exis-
tence of additional gauge bosons decaying to top quarks (for
example, Z’→ tt̄) [2], vector-like quarks (VLQs) which couple
strongly to the third-generation [3], and supersymmetric top
squark partners [4]. ATLAS and CMS are already searching
for such phenomena in a wide variety of channels [5–12], often

using top tagging algorithms to distinguish between top jets and those which arise from light
quarks and gluons - henceforth referred to as quantum chromodynamics (QCD) background or
simply background.

The standard decay channels of the top quark are illustrated as a Feynman diagram in Figure
1. At low pT this decay takes the shape of 3 distinct prongs, which serves as a useful signature for
top tagging. At greater pT , the jets become highly collimated and merge into a single "fat-jet" of
high radius (usually 0.8). Traditional top taggers use quantum chromodynamics (QCD) based
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Figure 2: Histograms of the fraction of jet pT carried by constituents in η - φ space for examples of signal and
background jets. Jets were preprocessed as described in section 3.

variables such as τ32 and N-subjettiness [13], as well as jet mass and jet reconstruction history to
classify events. While well motivated, these methods achieve relatively low performance metrics
on boosted top jets.

Tagger performance is usually evaluated based on the shape of response operating characteristic
(ROC) curves, of which Figures 5, 8, 9 are examples. These plot a classifier’s background (bkg)
rejection versus signal (sig) efficiency, where:

Bkg rejection =
1

f alse positive rate

=
# true bkg

# true bkg tagged sig

Sig e f f iciency = true positive rate

=
# true sig tagged sig

# true sig

Higher background rejection at a given signal efficiency corresponds to better tagger performance
in that regime, and thus the best performing network is characterized by an ROC curve with the
maximum area beneath it.

Reviews of jet sub-structure based techniques in ATLAS [14] and CMS [15] find background
rejection factors on the order of 15 and 5 in the 50% and 80% signal efficiency range, respectively,
on jets with pT near 1 TeV. As LHC experiments continue to collect and analyze more data from
boosted top quarks, it is critical to improve tagger performance in this high pT regime to increase
chances of detecting rare new physics.

Use of neural networks (NNs) for signal/background discrimination has become increasingly
prevalent in particle physics analyses [16–19], but is not yet commonly implemented for top tagging.
A great deal of experimentation is underway, however, with physicists exploring many input
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strategies and architectures. Currently, the most common approach is to translate information from
hadronic calorimeter deposits into a 2D "jet image", which is then processed by a Convolutional
Neural Network (CNN) [20] or Deep Neural Network (DNN) [21, 22]. Figure 2 shows example
jet images of both top and background jets that could be input to a CNN. Detector activation for
these jets is noticeably sparse and it appears difficult to discern edges or distinguishing structural
features of the jets. Thus, despite the power of CNNs as a tool for image recognition, their promise
in this application may be limited by the loss of information that occurs during pixelization.

The search for alternative machine learning methods for boosted tagging is therefore in full
force. Our recent paper [23] presents an input strategy in which a Dense Deep Neural Network
(DNN) discriminator is fed 4-momentum vectors of the particles which comprise the jet (i.e. jet
constituents). This approach has the advantages of requiring extremely minimal processing beyond
reconstruction of calorimeter deposits and allowing great flexibility in how inputs are ordered, a
feature which could be exploited to communicate salient information about jet substructure. Both
Louppe et al. [24] and Butter et al. [25] have investigated a similar 4-momentum input strategy
for boosted W-tagging and boosted top tagging, respectively. The former use a recursive jet
embedding to reconstruct the QCD processes underlying the jet structure, and the latter use a
DNN with custom layers based on Lorentz transformations and Minkowski metrics. Louppe et
al. were also interested in the effect of constituent ordering on tagger performance. Surprisingly,
their study found that a simple descending pT sorting scheme yielded the best performance, even
though initial studies showed that ordering based on jet structure was more collinear and infrared
safe.

In the case of our DNN tagger, the 4-momenta are fed to the network in the form of a flat
list where each jet constituent is described by its pT , pseudorapidty (η) and azimuth (φ). While
performance of this tagger was promising, the lack of demarcation between constituents is likely
not ideal for learning jet structure and the DNN may not be as sensitive to information offered
by the ordering of constituents, given the flatness of the input list and simplicity with which
fully-connected layers treat data. These problems could be addressed by introducing a Recurrent
Neural Network (RNN) method called Long Short-Term Memory (LSTM) [26]. LSTM neurons
accept sequences of vectors as inputs and use a feature called the cell-state to retain information
about previous entries. The neuron then uses information contained in the cell-state to exert
influence on both the value of the outputs and what proportion of the incoming signal is retained.
This enables us to arrange our four-momentum inputs in a more logical way: as a true sequence of
jet constituents, where the list is reshaped as a tensor with a "time" dimension. Each jet constituent
then constitutes a "timestep" with three features (pT , η and φ). In the present study, we use this
sequence representation of the jet constituents as the input for an LSTM based top tagger. Of
particular interest is the effect of different sequence ordering methods on tagger performance.

Part II of this report explains the simulation and preprocessing of the data for network training
and testing. Part III presents the network architecture and experiments in optimizing hyper-
parameters. Finally, Part IV provides a detailed look at tagger performance under different sorting,
pileup, and jet pT conditions.

II. Dataset

i. Signal and background modelling

A more detailed account of simulation and data selection methods can be found in Reference [23].
The jet samples required for network training were generated using Monte Carlo (MC) simulations.
Both signal from hadronic top quark decays and background from gluon and light quark jets were
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generated at leading order using PYTHIA v8.219 [27].
The signal samples consist of Sequential Standard Model Z’ boson [2] production at the LHC

with pole mass ranging from 1400-6360 GeV. Cuts are applied on the Z’ centre of mass energy and
on top quark pT to ensure that the pseudorapidity distribution of the top jets is approximately
equivalent to that of the background jets. The final signal samples consist of Z’→ tt̄ events with
all-hadronic top decay. Background events are generated as QCD "dijet" processes, including
gluon-gluon, quark-gluon and quark-quark scattering, with pT of outgoing partons ranging from
470 to 2790 GeV. A large number of "soft" QCD interactions, referred to as minimum bias, are also
generated.

Detector response is simulated using the DELPHES v3.4.0 suite [28] running with the default
emulation of the CMS detector and particle flow event-reconstruction [29, 30] - the latter known as
energy flow in DELPHES. Minimum bias is added to signal and background events in order to
simulate "pileup" [31], a property of LHC events which describes how many proton-proton (pp)
collisions occur at approximately the same time. Given that each of these interactions produce hits
in the detector, higher pileup correlates with more noise and higher rates of detector activation
(both spatial and temporal). A random number of pp collisions are overlaid, with the exact number
being drawn from a Poisson distribution. We investigated two different pileup scenarios. The
first uses a Poisson distribution with a mean of 23, corresponding approximately to conditions
of LHC data-taking during 2016; while the second has a distribution with mean 50, mimicking
the conditions expected at the end of LHC Run 2. We will refer to the first scenario as LHC 2016
pileup, and the second as 50 pileup.

ii. Jet selection

DELPHES energy flow objects resulting from event reconstruction were clustered into high radius
jets using the anti-kT algorithm [32] implemented in FastJet [33]. The jet radius (R), a parameter of
the clustering which determines the minimum distance between the centres of two jets, is set to
R = 1. The distance R between two particles in η – φ space is defined as

R =
√

∆y2 + ∆η2 (1)

Where y is the rapidity.
On some samples, a trimming procedure [34] is applied to reduce noise from soft radiation.

This involves using the kT algorithm [35] to re-cluster energy flow objects into "subjets" with
R = 0.2. Any subjet which carries less than 5% of the initial jet’s pT is eliminated by removing its
constituents from the list of jet particles.

Additional cuts were applied to constrain the set to jets with 600 GeV ≤ pT ≤ 2500 GeV and
η ≤ 2.0. The remaining jets were sub-sampled to achieve a flat distribution in pT and ensure that
both signal and background have matching distributions in η. This is done in attempt to prevent
the network from relying on the underlying distributions to distinguish signal from background,
and to mitigate the degradation in performance at high pT that is typical of jet taggers.

The final sample consists of approximately 7 million jets, split evenly between signal and
background. The full sample is divided into 3 subsets which play different roles in network
training. The first 80% of jets form the training set, which are passed to the network as labelled
examples. Network parameters are updated as a function of the output’s agreement with training
set labels. 10% are assigned validation samples, which serve as a quick check to ensure that
the network returns similar results on different subsets (and thus that the training set was not
skewed in some way). The final 10% forms the test set, on which performance metrics such as loss,
accuracy and background rejection are evaluated to track progress during training. The jets are
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shuffled after each round of training (known as an epoch), such that each set contains a different
subsample of jets. In addition to this sample, an orthogonal set of 11 million jets (again comprised
of 50% signal, 50% background) is generated for the final evaluation of the trained network.

iii. Input shape and sequence ordering

The input list must be reshaped to a sequence for compatibility with the LSTM. The DNN inputs
consisted of a flat list of the jet constituents, where every 3 entries characterize a single energy
flow object. Given that Dense layers require a fixed number of inputs, jets with more than 120
constituents were truncated, while jets with fewer were zero padded so that the total length of
the list was constant at 360. For input to an LSTM, the jet constituents are instead arranged as a
sequence of 3-dimensional vectors (having values in pT , η, and φ), with each sample consisting of
120 timesteps.

Figure 3: Representation of the binary tree constructed by jet algorithms
during clustering. In this study, an algorithm is developed to
produce an list of original particles that provides information about
the tree structure. The tree traversal is based on dij of earlier
recombinations.

We hypothesize that the
order of this sequence can pro-
vide salient information for
signal/background discrimi-
nation to the LSTM tagger,
and thus develop alternative
sorting methods which at-
tempt to represent the un-
derlying QCD and substruc-
ture of the jets. In particular,
we use a recursive algorithm
which utilizes the history of
the initial anti-kT clustering to
add constituents to the input
list in an order which reflects
the jet substructure. Cluster-
ing algorithms effectively pro-
duce a binary tree from the reconstructed particles, as depicted in Figure 3, where the intermediate
jets are referred to as "PseudoJets" and are given by summing the 4-momenta of the particles
or PseudoJets with the smallest distance metric 1 at a given iteration. Our jet structure sorting
algorithm performs a depth-first traversal of this tree, adding to the input list when it reaches an
original particle, such that the final ordering resembles the tree’s branching pattern.

This method is compared to sequence ordering schemes that were previously tested on the
DNN; namely sorting purely by pT of jet constituents, and sorting by subjet. The subjet sorting
scheme first orders constituents by subjet pT , and then by pT of individual constituents. Subjet
sorting was found to yield the best performance in the DNN tagger.

III. Network Architecture

All networks were implemented in the KERAS suite [36] using a Theano [37] backend. Network
architecture was determined by a largely heuristic approach, using examples from literature to

1The distance metric used is referred to as dij, i and j being indices of particles or PseudoJets in the event list, and

is defined as: dij = min(k2p
ti , k2p

ti )
∆2

ij
R2 , where kti is the transverse momentum of particle i, p define the precise algorithm

used (p = 1 for kT , p = −1 for anti-kT or p = 0 for Cambridge-Aachen), R is a parameter of the clustering, and
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Figure 4: Response operating characteristic (ROC) curve comparing LSTM + Dense networks of various widths.
Differences in performance are not substantial, however the intermediate size gives the highest background
rejection values overall.

guide our experimentation. Architecture studies were performed on data pre-processed according
to the best performing approach from our DNN study [23]. The samples mimicked LHC 2016
pileup, and were sorted first according to highest pT subjet, followed by constituent pT .

The simplest networks tested consist of a single LSTM layer followed by a fully-connected (or
Dense) layer of half the width. These dimensions were set because wider fully-connected layers
require greater computing time, and initial studies found that changing the width of this layer
had little impact on performance relative to the effect of changing the width of the LSTM layer.
Adding this Dense "projection" was inspired by CNNs, which use fully connected layers to extract
information from the Convolution and Pooling stages. A procedure called masking was applied
to the inputs to facilitate inputting sequences of variable length. All inputs are first fed through a
masking layer, whose role is to remove zero-padded timesteps (i.e. jet constituent place-holders
where pT = η = φ = 0) which could otherwise skew the LSTM parameter adjustments. Initial
studies showed that performance without masking was relatively poor, with classification accuracy
of maximum 73% and background rejection at 50% signal efficiency of 10.

Layer sizes were varied by powers of two to constrain the hyper-parameter search and to
maximize computing efficiency on the GPU. The result of our LSTM layer size experiments is
summarized in Figure 4. We found that a network with 128 LSTM nodes followed by a fully
connected layer of 64 nodes converged to the best performance in terms of background rejection
at 50% and area under the ROC curve. Networks with wider LSTM layers had a tendency to
over-train very quickly and reach lower background rejection factors overall.

Network architectures incorporating a 2 LSTM layers were also tested, however this was found
to yield minimal benefit to performance (See Figure A1), while substantially increasing computing
time.

Experiments were also performed to determine the ideal optimizing function. We primarily
tested variants of RMSprop [38], including Adam (RMSprop with momentum) [39] and Nadam
(RMSprop with Nesterov-accelerated momentum) [40], due to its widespread use in sequence
learning problems. While networks optimized with Nadam typically achieved higher background
rejection values than with RMSprop or Adam, this optimizer also exhibited very unstable perfor-
mance with respect to the test subsample and training course, especially for larger networks. As

∆2
ij = (yi − yj)

2 + (φi − φj)
2, y being the rapidity
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Figure 5: Response operating characteristic (ROC) curve comparing the best performing DNN tagger to best performing
LSTM tagger under LHC 2016 pileup conditions. Inputs to the DNN were trimmed and sorted by subjet,
while LSTM inputs were untrimmed and sorted by the jet substructure-based method described in Section
I.iii

seen in Figure A2, the background rejection occasionally crashed to very low values, sometimes
not recovering. This behaviour called into question the Nadam-optimized network’s robustness
to sample variation, and thus we felt it important to find an alternative which converged more
uniformly. Using the Adam optimization method greatly stabilized performance during training
with minimal loss in performance.

Our final best performing network consists of an LSTM layer with 128 nodes, which is fed
variable length sequence inputs by the masking layer, followed by a fully-connected layer of
64 nodes before the binary output. The network is optimized using Adam applied to a binary
cross-entropy cost function. This network is used in all further experimentation detailed in Section
IV.

IV. Performance

The primary interest of this study was to evaluate how an LSTM network would compare to the
previously developed DNN. Figure 5 shows ROC curves for the DNN and LSTM taggers under
their respective best performing architectures and input conditions. The LSTM network yields
better performance than the DNN across all signal efficiencies, in particular giving greater than a
factor of two improvement in background rejection at the 50% signal efficiency point.

Comparing the histograms of each of tagger’s outputs helps us to deduce how LSTMs improve
the classification. Figure 6 shows prediction histograms for the DNN and LSTM tagger on identical
inputs – trimmed jets mimicking LHC 2016 pileup – in order to isolate the effect of the change in
network type. Based on this plot, the improvement in background rejection appears to result from
enhanced signal classification. Prediction on signal jets is strongly shifted towards the two highest
bins (0.98− 1.00), thus reducing signal overlap with background jets given higher predictions.
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Figure 6: Superposed network prediction histograms of DNN and LSTM taggers, separated by true signal and true
background. The networks are compared on identical inputs - trimmed jets representing the LHC 2016 pileup
case. The gain in discriminating power appears to result largely from an upward shift in output value for
signal jets.

i. Sequence ordering and trimming

The hypothesized advantage of LSTM was that memory properties conferred by the cell-state
would enable our neural network to learn long-range patterns in data. We sought to take
further advantage of this by ordering the jet constituent sequences such that variation in the
"time" dimension could communicate useful information about a jet’s substructure, and thus the
underlying QCD. The algorithm used to accomplish this is described in Subsection I.iii.

Figure 7: Superposed prediction histograms of an LSTM network trained on trimmed, subjet-sorted inputs versus
untrimmed, jet structure sorted inputs. Jets mimic LHC 2016 pileup in both cases.
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Figure 8: Training progress (left) and response operating characteristic (ROC) curve (right) of sequence ordering and
trimming conditions on the best performing LSTM architecture. Training on untrimmed inputs gives better
performance regardless of sorting method, with a sequence ordering scheme based on jet substructure giving
the best performance overall. All jets resemble LHC 2016 pileup.

Different trimming cases were also tested. While inputting untrimmed jets slightly harmed
performance in the DNN tagger, disabling trimming markedly increased background rejection
given by the LSTM network, with the best background rejection at 50% rising from 78 to 98 on jets
resembling LHC 2016 pileup and sorted by subjet. We hypothesize that leaving the jets untrimmed
preserved randomness in background jets that was essential for identifying them as such. This is
corroborated by the prediction histogram in Figure 7, which shows that LSTM networks trained on
untrimmed inputs shift predictions on background jets towards the lowest bin, while producing
negligible change in the signal distribution.

Sequence ordering methods were also shown to have an impact on performance, though
not to as great an extent as trimming. Figure 8 shows performance of several sorting schemes
on untrimmed jets, and compares them to the original subjet sorting on trimmed inputs as a
benchmark. All three sequence ordering schemes - jet structure, subjet, and pure pT - give higher
background rejection values than are achieved with trimmed inputs. Furthermore, the sequence
ordering methods that relate to jet substructure/QCD (namely, subjet and jet structure sorting)
outperformed the pure pT sorting, suggesting that the tagger can learn about structural features
from the ordering of constituents, and that this information is useful for classification.

It is particularly encouraging that our sorting algorithm based on the jet clustering tree yields
the best performance overall, and motivates us to seek even more useful representations of the jet
structure through sequence ordering. Networks trained on jet structure ordered inputs surpassed
100 background rejection at 50% signal efficiency, which corresponds to only 1% of background
jets being falsely identified as signal. Interestingly, the difference in performance between ordering
methods is much less pronounced in the high signal efficiency regime. Thinking in terms of
prediction histograms, this suggests that the differences arise from shifting the signal/background
distributions in the high prediction range, rather than reducing overlap in the intermediate values.

ii. Pileup

Given the anticipated increases in LHC pileup in the coming years, it was important for us to
study the effect of higher pileup on tagger performance. The soft interactions of pileup add
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Figure 9: Response operating characteristic (ROC) curve comparing varying trim and pileup conditions on an LSTM
network. Performance is very resilient to higher pileup in the trimmed case, but less so when the jet inputs
are untrimmed.

noise that makes it more difficult to discern the structure of the hard scattering interaction. We
looked in particular at the interaction between pileup and trimming conditions, being concerned
that the observed performance benefits of disabling trimming could be lost at higher pileup.
Figure 9 summarizes the result of this analysis, comparing trimming cases for a network trained
on trimmed subjet-sorted inputs, and untrimmed jet structure-sorted inputs. Consistent with
the DNN study, tagger performance is remarkably resilient to pileup when inputs are trimmed.
Performance slightly degrades at 50 pileup in the untrimmed case, however at intermediate to
high signal efficiency training on untrimmed jets still gives higher background rejection. Curiously,
at low signal efficiency the performance approaches that of networks trained on trimmed jets.

Another interesting effect of pileup was in its interaction with sorting methods. As mentioned
in the previous section, the jet structure sorting algorithm gave the best performance on inputs
mimicking LHC 2016 pileup. The values given in Table 1 show that this advantage is lost in the 50
pileup case. This could indicate that the jet clustering is more random and less representative of
the underlying QCD when a high degree of minimum bias is present, and thus the more general
structure provided by subjet sorting is better for learning to classify jets.

V. Conclusion

The development of jet constituent-based top tagging leads naturally to experimentation with
LSTMs, given the possibility to arrange such inputs as sequences of discrete timesteps. We
show that using a simple and relatively narrow LSTM network with a fully-connected projection
improves greatly on a DNN top tagger using the exact same jet constituent inputs in list form.
Our best performing LSTM reaches background rejection at 50% of 101 on jets with 600 GeV ≤
pT ≤ 2500 GeV, more than two times greater than that achieved by our previously studied DNN.

Contrary to the DNN tagger, inputting untrimmed jets benefits LSTM performance by up to
2̃5%. Furthermore, using a sequence ordering method based on jet clustering algorithms allows
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Input conditions Background rejection at % signal efficiency

Pileup Trim Sorting 80% 50% 20%

DNN 9.8 45 365

LHC 2016 Yes Subjet 13.4 78 779
No Jet structure 17.0 101 931

Subjet 16.7 97.1 854.3
50 Yes Subjet 13.5 78 779

No Jet structure 16.1 93 791
Subjet 16.6 96 889

Table 1: Background rejection factors of the best performing LSTM network architecture, as described in section III,
given different input types. Sorting methods are described in Section I.iii. Background rejection values given
by the best DNN tagger, trained and evaluated on trimmed jets with subjet sorting on LHC 2016 pileup, are
also given for comparison.

the network to reach slightly higher background rejection factors at LHC 2016 pileup, but the
advantage of this jet structure sorting disappears at 50 pileup. As the LHC continues to move
towards higher luminosity, it is important to thoroughly assess and try to mitigate such pileup
effects.

Our ultimate goal is to implement improved top tagging in particle physics analyses, with the
hope of increasing our sensitivity to the physics of highly boosted top quarks. This could open
to door to new discoveries in BSM physics, as well as improve precision measurements of the
Standard Model.
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A. Supplemental Figures

Figure A1: Response operating characteristic (ROC) curve for networks with one or two LSTM layers. Adding a
second LSTM layer gives negligible change in performance.
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Figure A2: Training progress of LSTM network demonstrating relative instability of the Nadam optimizer.
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