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Abstract

Cherenkov Detectors measure light radiated in a cone by charged particles moving faster than light in a medium. They
emulate a camera with its pixels facing inwards around the detection chamber. For particle identification purposes
in these detectors, visual signatures in the emitted radiation are analyzed. For example, the standard analysis of the
Super-Kamiokande detector in Japan is based on likelihood fits to differentiate between electrons and muons moving
in the detector. In this project we will explore the use of machine learning methods, particularly convolutional neural
networks, in order to outperform the standard analysis in e-µ separation for Super-K.

I Introduction

Cherenkov detectors are used for charged
particle identification. When a charged par-
ticle moves through a medium faster than

light can propagate in that medium, Cherenkov
radiation is released in the shape of a cone in the di-
rection of movement. The interior of the Cherenkov
detector is instrumented with PMTs to detect this
Cherenkov light. Particles, then, can be identified
by the shapes of the images on the detector walls.

In neutrino experiments, water Cherenkov detec-
tors offer clean e-µ separation that allow to identify
the flavour of the interacting neutrino. An example
of this kind of detector is Super-Kamiokande [1]: a
cylinder filled with 50 kilotonnes of water located
underground in Japan.

Standard event identification uses likelihood fits
to the PMT charge and timing information. In par-
ticular, theoretical Cherenkov cones are fitted to the
raw data using different particle-type hypotheses,
to see which one corresponds best. This project
will test the use of a machine learning algorithm as
an alternative to the standard e-µ separation, and
compare its performance to the methods already in
practice.

Specifically, we will be using a Python machine
learning framework, Tensorflow [2], to train a Con-
volutional Neural Network (CNN). The goal will
be to achieve the highest classification performance
possible on simulated electron and muon events in
Super-K.

In the rest of this section we introduce the prelimi-
naries necessary for this project, namely Cherenkov
detectors and machine learning. Section 2 is de-
voted to the processing of data into an efficient
format, and section 3 will focus on the details of
the CNN itself. For the results see section 4.

1.1 Cherenkov Radiation

A Cherenkov detector measures any light that is
produced in its dark cavity where the light mostly
comes from Cherenkov radiation of charged parti-
cles, analogous to a sonic boom when an aircraft
breaks the sound barrier.

A charged particle that moves in a medium will
emit concentric wavefronts of electromagnetic ra-
diation as in figure 1. When the particle moves
faster than c

n , the wavefronts interfere construc-
tively with each other in a conical trajectory through
the medium.

1

mailto:theo@tomalty.com


Ring Identification Algorithm — August 2016 — IPP Summer Student 2016

Figure 1: Diagram depicting the wavefront of Cherenkov radi-
ation of a charged particle moving faster than light
in a medium.

Charged particles in a Cherenkov Detector orig-
inate at random positions in the detector volume,
ideally from interactions between the water and
passing neutrinos. The vertex of these particles will
correspond to the centre of the largest circle in fig-
ure 1 and, as such, the Cherenkov radiation will
propagate outwards at a fixed angle with respect to
that vertex position. The result is a conical projec-
tion of light onto the detector walls, like a flashlight
shining from the particle vertex.

Cherenkov radiation manifests on the detector
wall in the shape of rings. These are measured by
the PMTs to produce an event display similar to
figures 2 or 3. The shape of the Cherenkov rings
depend on the type of particle that generated them,
and so the shape can be used to identify the particle.

Figure 2: Display of the PMT readout of Super-K detector in
the case of a single electron.

As mentioned in the introduction, we will be fo-
cusing on the identification of electron and muon
rings. By comparing the electron ring in figure 2
with the muon ring in figure 3 one can see that elec-
trons produce much fuzzier rings than muons do.
This is a result of electron trajectories being much

Figure 3: Display of the PMT readout of Super-K detector in
the case of a single muon.

more scattered than those of muons, and will be
the key feature to exploit in particle identification.

Given a set of initial parameters (such as position
of interaction, direction and energy of particle, type
of particle, etc.) the distribution of light on the
detector walls can be predicted by mapping the
theoretical emission profile onto the cylinder. In
this way, the standard analysis classification varies
each continuous variable to minimize the difference
between predicted and observed PMT output for
each assumed particle type. When the maximum
likelihood is found in the parameter space of each
type, the particle is identified by comparing the
likelihood of the particle types with each other, and
selects the maximum.

1.2 Machine Learning

Machine learning methods are used in this project
because they are robust in the presence of statistical
variation from case to case. They learn features
automatically without the need for as much tuning
as likelihood fits. Since this is a visual problem
we will attempt to emulate human classification by
implementing a specific type of neural network that
is based on mammal vision.

Simple Network

The principles of machine learning are in fact quite
simple. The standard problem is to have a set of ob-
jects, which can be images, soundbites, or just lists
of numbers, and a set of possible classifications for
those objects. Given a random set of objects, the job
is to classify them based on their numerical input
parameters (pixel intensity, Fourier decomposition,
etc.)

The simplest network assigns weights between
each input parameter and each possible classifi-
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cation. If one input channel is correlated with a
specific classification, the network will consider a
presence of that input as evidence towards the cor-
responding classification. Suppose that you collect
all the inputs into a vector xi of size N, and there
are P possible classifications. The output of the
network will be an evidencej vector of size P, with
one channel for each classification.

The variable weights, described above, for each
input-output pair are collected into a matrix Mji.
Evidence for each classification is then a matrix
multiplication, given by equation 1, where we have
added a bj vector to represent a statistical bias in
the set of objects to account for some classifications
being more likely than others.

evidencej =
N

∑
i=1

Mjixi + bj (1)

The network submits as a prediction whichever
classification accumulates the most evidence in its
favour. In fact, one can evaluate the confidence of
the network for each classification by performing
a softmax transformation of the evidence using
equation 2.

pj =
exp(evidencej)

∑j exp(evidencej)
(2)

The values of Mji and bj are not known a priori.
They must be optimized for a particular problem
during a training process. To do this we define a
continuous function that quantifies the imperfec-
tion of the network, called the network loss (or
cost function), and minimize it on a set of training
objects.

The simple cost function in equation 3 is defined
by the L2 norm distance between the network pre-
diction and the ideal output. Equation 2 is used
to represent the network prediction because the
terms sum to unity, and the ideal case is set to a
qi vector of the form [0, 0, 1, 0, ...] with 1 in the true
classification channel.

D = ∑
images

|p− q|2 (3)

Training the network then becomes as simple
as minimizing the loss function in the space of
parameters Mji and bi. Assuming that this type of
classification is appropriate for the task at hand,
optimizing these parameters on a large training set
of objects should enable the network to classify well
an independent set of test objects.

Figure 4: Simple neural network with one hidden layer of 4
neurons.

For more complicated problems it is common to
implement hidden layers of neurons in the network
(see figure 4). We use the same linear transforma-
tion as in equation 1 except instead of using weights
that map directly to the evidence, we map to an
arbitrary number of neurons and then map those
neurons to the output predictions (one set of ma-
trix weights and biases for each map, and apply
softmax only at the very end).

In this way, each neuron can be activated for
a particular configuration of the input. The net-
work is then able to learn features of the input, con-
sidering multiple channels, rather than just single
input-output correlation. Depending on the prob-
lem there can be as many hidden layers, and as
many neurons, as you want. But adding complexity
to the network when the problem does not warrant
it usually causes problems due to overfitting and
irregularities in the loss function topology.

Convolutional Neural Networks

The networks described in the previous section
work well when data can be characterized with
numerical values, and each value or combination
of values is associated with specific classifications.
In image recognition the set of pixel intensities are
used as input. A simple network, then, would map
each pixel to the hidden layers and then to the out-
put classification. Each neuron could be activated
by a certain combination of inputs, and so to recog-
nize a face, for example, the network would have
to have one neuron dedicated to each possible face
position, angle, shading, scale, etc.

This is, of course, impossible because the number
of combinations are too great, and so an alterna-
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tive method must be introduced. Just as the sim-
ple network reflects logic processing in a human
brain, mammal vision will be the template for an
image recognition network. Rather than forming
connections associated with every possible view,
our brains scan the field of vision for specific fea-
tures, organizes those features into shapes, and
combines those shapes into objects.

Figure 5: Diagram of a Convolutional Neural Network (CNN)
used for classifying images.

A Convolutional Neural Network (CNN) follows
the same principles. Rather than classifying an im-
age based on its complete pixel input, the network
makes use of a set of J filters, each one a square
of weight variables (like a small n× n image), that
corresponds with a particular feature on the image.
The filters are scanned across the original image, in
a discrete convolution, to produce feature maps that
are activated in regions where the corresponding
filter is in accordance with the image. Figure 5 rep-
resents a full CNN, where the first step corresponds
to feature map production.

Typically, filters for the first convolution repre-
sent generic features like an edge, a colour gradient,
or a texture. In order to classify more complex ob-
jects a second convolution is performed, this time
with filters that have an independent set of weights
for each feature map. That way it is able to identify
combinations of activated features in a region that,
when grouped, correspond to a shape. A third con-
volution can be performed to group combinations
of shapes into objects.

After each convolution it is standard to down
sample the maps by pooling the pixels together, as
shown in the second step of figure 5. This is done
because each level of complexity requires less reso-
lution. It is usually more important that a feature
exists in a certain region than the exact topology
of that feature on the feature map, and it is always
beneficial to reduce the number of weights that
need to be optimized when possible.

At the end of this process we are left with many
feature maps that indicate which objects are present
in the image and, roughly, where those objects are
in relation to each other. All that is left to do is to

pass this information into a standard neural net-
work, complete with hidden layers of neurons, to
classify the image. In figure 5 this corresponds to
the last three steps in the chain. For example, in
facial recognition, the output objects of the convolu-
tion layer might be blue eyes, thin nose, wide ears,
etc. and the classification would be the person’s
name whose face it is.

II Data and Processing

To train a neural network, a large number of images
are required for this study. The standard Super-K
particle simulation was run on 400,000 events that
were split into a training sample and a testing sam-
ple. An equal number of electrons and muons
are generated, with vertexes homogeneously dis-
tributed in the detector volume and initial energy
evenly distributed between 300MeV and 1GeV. Each
event in the simulation returns a map of the de-
tector response including PMT integrated charge,
which is proportional to light intensity, and timing
information. The standard analysis fitting algo-
rithm, fiTQun [3] [4], is run on all of these events to
return a particle-type prediction as well as approx-
imations of the particle’s kinematics (e.g. vertex
position and momentum).

2.1 Image Production

Each PMT in a Cherenkov detector produces a mea-
sure of light intensity and has a fixed position in
3D space, much like a single pixel on a cylindrical
image. Convolutional Neural Networks function by
scanning square images, using different filters, to
identify features. A first problem we encounter is
that of generalizing flat convolution (scanning) to
a cylindrical one. Another problem arises because
particles can originate at any point in the detector,
and move in any direction, so there are many de-
grees of freedom in the shape of the rings on the
cylinder. They can have different sizes, elongations,
and further irregularities arising in the corners of
the cylinder. Such ring deformations can make
learning very difficult for the algorithm.

In order to simplify the problem we focus the
algorithm on the Cherenkov profiles rather than
their projection onto the cylinder. This is done,
as indicated in figure 6, using a conical projection
of PMT charges onto a flat, transverse plane. The
standard analysis reconstructed vertex is used as
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the point of origin for the projection. Instead of
warped rings on a cylinder we will get circular
rings on a flat image, so both problems described
above are solved this way.

Figure 6: Left: Process the detector output by perform-
ing a conical projection of the PMT signals onto
transverse-planar image. Right: Imaginary photons
passing through a single PMT, emitted from a single
vertex.

A blank 30× 30 pixel image is set up in 3D space.
It is centred at the intersection of the particle trajec-
tory with the detector walls, normal to the direction
of the particle, and its width and height are scaled
with the distance traversed by the particle. The
position of the plane is chosen so that the projected
rings are centred, and so the resolution of the image
can be compared to the resolution of the detector.
The orientation of the image is chosen in order to
ensure the rings are all circular. In addition, the
image size is scaled to have a length and width
proportional to the expected ring radius (so that all
the rings appear the same size in the images).

Ring projections are done by considering imagi-
nary lines between each PMT and the particle ver-
tex. If the line intersects the image, the correspond-
ing PMT signal is added to the weight of the inter-
section pixel. This converts a complex shape on the
detector wall to a circle on the image plane. It is
often the case, however, that some PMTs are much
closer to the vertex than others, and the resulting
difference in angular resolution of the detector is
enough to make the output image quite irregu-
lar. To smooth out the image, a flux of randomly
distributed lines intersecting a PMT, as shown in
figure 6, are set to carry a fraction of the PMT’s
signal. These lines are projected onto the image
individually instead of a single line projection per
PMT.

The question of scaling was mentioned briefly
above. The image size is set proportional to vertex-

to-wall distance in the direction the particle travels.
This way, since Cherenkov cones all have the same
angle with respect to the vertex, the rings have the
same radius on the output image. However, since
it is not ideal to use an image resolution that is
much higher than the PMT resolution, the events
are separated into four image sets with different
distance-to-wall ranges. Examples from three of
those sets are shown in figure 7. Each set has a
different size of ring on the image, selected to cor-
respond with PMT resolution, but all the images in
a single set have the same ring size. This way, we
train a separate CNN for each set so that an individ-
ual network does not have to deal with differences
in ring shape due to resolution issues.

Figure 7: Output images of the cone projection described in
figure 6. Top: muon rings, Bottom: electron rings,
Left to Right: data set 1, 3, and 4.

The image sets were separated, and scaled, ac-
cording to the following specifications:

Set 1: These images scale the rings to take up most
of the image. The lower bound on the distance-
to-wall is selected so that the resolution of the
detector is greater than that of the 30× 30 pixel
images (evaluated at the centre of the image).

Set 2: These rings are scaled to the same size as set 1
but here the distance between PMTs is larger
than the size of the image pixels. In other
words the resolution in these images is inflated
artificially, and is done so until the algorithm
performance was observed to fall off.

Set 3: In this distance-to-wall range, the artificial res-
olution becomes a problem for the algorithm,
and so the image size is set so that the pixels
are, on average, 1.25 larger than PMT distances.
The small scale factor is used in consideration
of the fixed 5 × 5 filter size shared between
data sets.
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Set 4: These images follow the same logic as the pre-
vious set, except with particles that are closer
to the detector walls so the rings are smaller
on the images.

Once this procedure returns a stream of square
images of circular rings, like those in figure 7, a cut
must be made before passing these to the CNN. It
is standard to remove events from the analysis with
vertexes closer than 2m from the detector walls, so
this cut is performed using the reconstructed vertex
from fiTQun. In cases of particles very close to the
walls, however, the 2m cut can be insufficient be-
cause fiTQun greatly fails the vertex reconstruction
due to lack of information. To remove the events
that slipped through the first cut, seen in the left
corner of figure 8, a second cut is done on events
with less than 160 PMTs hit in the detector.
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Figure 8: True distances of particles to the wall vs. the num-
ber of PMTs that registered hits with light. These
events have already passed the fiTQun 2m-from-wall
selection.

III The Algorithm

Convolutional neural networks [5] are standard for
image recognition problems, and are used for this
project. The algorithm takes input from 30× 30
pixel images, as in figure 7, and will be tasked with
classifying the rings as electron- or muon-shaped.
The CNN will be designed to process images analo-
gous to how a human might, that is by identifying
sharp edges with muons and and fuzzy edges with
electrons.

3.1 Network Architecture

For our network, 5× 5 pixel filters were used to cor-
respond roughly with pixel scale of the ring edges.

The filters were set manually in this project because
the network was observed to have difficulty opti-
mizing the filter shapes independently. The initial
filters shown in figure 9 contain sharp and smooth
edges, each rotated eight times for complete inves-
tigation of the circle, as well as reflection-invariant
filters that will be used to probe the ring shape in
general.

Figure 9: Sample of the initial filters used in the convolution
layer of the network. 22 filters total including 16
from smooth-sharp edges each rotated eight times.

The feature maps associated with each filter are
pooled into 10× 10 images (using the maximal pixel
each 3× 3 area from the feature map) and the pix-
els of the pooled images are linked directly into
the classification network. In more complex image
recognition problems a second convolution might
be performed but our network does not need to
perform high-level analysis of shapes aside from
simple feature identification.

The classification network, then, consists of two
neuron layers (with fourteen neurons each) before
the two-channel output prediction as either muon
or electron. This is a standard neural network with
the purpose of converting visual information from
the feature maps into a ring classification. Certain
features, such as a smooth edge, can be weighted
more or less strongly depending on where they
occur, and the presence of two layers offers more
complex logic in the classification if needed.

3.2 Network Training

With a large training set of images it is virtually
impossible to minimize the network loss on all the
data at once, so each step in the minimizing proce-
dure uses a random batch of 200 images. Step size
in the variable space must be chosen carefully to
not overstep global topology while also not getting
stuck in local fluctuations. Simple trial and error
of different step sizes is done until training suc-
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cessfully begins reducing the average losses. Recall
that there are four separate CNNs, that operate on
individual image sets. Each network is trained in
parallel on independent batches of images.

This stochastic method works well in learning
general features that are shared between many im-
ages, but easily forgets important features that ap-
pear rarely. For that reason, the network parame-
ters are saved in an averaged quantity that contains
components from all previous steps (older steps
are weighted less). The decay rate is selected so
that roughly 500 of the latest steps are significant in
the average, which corresponds to 100,000 images,
so that most images in the training sample will be
represented by the network. Testing is done on the
averaged parameters rather than the parameters in
the most recent step. As the algorithm converges,
the step size is also reduced exponentially so that
the parameters can settle in a true local minimum.

The training process provides a second reason
to split the images up into different sets. Each set
contains rings that look similar to each other, but
that are significantly different when compared be-
tween sets. Roughly 80% of the images are in set
1, 10% in set 2, and 5% in both 3 and 4. So if the
networks are trained on the same batch, images of
type 2, 3, and 4 have effective batch sizes that are
problematically small. Therefore, for the training
process, the images in each set are separated into in-
dividual directories, and each of the four networks
are trained in parallel using batches saturated with
their own image types.

IV Results

To understand the performance of the CNN it is use-
ful to compare it to the standard analysis (fiTQun)
in the case of single ring e-µ separation. It is first
necessary evaluate the performance of fiTQun.

4.1 Standard Analysis

FiTQun fits theoretical Cherenkov cones to the PMT
time and charge information using different particle
hypotheses. The Cherenkov cone with the largest
maximum likelihood is selected to represent the
event, providing a reconstructed particle type, ver-
tex position, energy, etc.

The simplest fiTQun configuration, to compare
with the CNN, uses two single ring fits: one elec-
tron fit and one muon fit. The accuracy of this

regime is plotted in figure 10 in red. As expected,
events in the second, third, and fourth image sets
perform subsequently worse because the rings are
smaller. There is, however, a significant dip in the
performance for muons in the first image set. In-
vestigation reveals that this region is populated by
images with more than one ring, most likely from
muons that have a segmented trajectory due to scat-
tering.

Figure 10: Performance of three fiTQun regimes for electron
and muon events and each image set. Red: de-
fault fiTQun with single ring electron and muon
fits (99.77% total performance), Purple: fiTQun
with two-ring segmented muon fit (99.846%), Yel-
low: fiTQun with three-ring segmented muon fit
(99.836%).

To improve the identification performance on
these cases, an augmented muon fit strategy is used
that searches for secondary rings. The algorithm
performances using two- and three-ring searches
are plotted in figure 10 in purple and yellow re-
spectively. It can be observed that the two-ring
segmented regime represents the best total classifi-
cation performance of the standard analysis.

4.2 Performance Comparison

Once the CNN is trained on two training runs of
1500 batches, the results are plotted in figure 11
with the best fiTQun regime for comparison. The
two algorithms are similar in performance except in
the first and last muon data set. There are far more
events in the first data set, however, so in total the
CNN recovers roughly 30% of the standard analysis
classification error. In reality, however, the CNN
structure is most comparable to a regime of fiTQun
that does not use timing information and which
is not tuned for segmented rings. In that case it
recovers close to 70% of the classification error.

In order to better compare these two classifica-
tion algorithms, we can plot the events in a 2D
histogram with the softmax output of the CNN in
one axis and the negative log likelihood measure
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Figure 11: Comparison of CNN classification (Green: 99.89%
total performance) to fiTQun with two-ring seg-
mented muon fit (Purple: 99.846%).

from fiTQun in the other (see fig. 12). Each plot
in the figure corresponds to images of a particular
data set and particle type. The vertical bars sepa-
rate a muon prediction from an electron prediction,
by the CNN, while the horizontal bars separates
fiTQun predictions. The lower left-hand plot is of
particular interest to us because set-1 muons con-
tribute the most to the problematic events in both
classification methods.

Figure 12: Displays of CNN softmax output (y-axes) vs.
fiTQun’s negative log likelihood (x-axes). Top: elec-
tron events, Bottom: muon events. Left to Right:
image sets 1, 2, 3, 4.

Investigation of the images where the CNN
works but fiTQun fails reveals rings that are greatly
distorted, presumably from a bad vertex reconstruc-
tion. These distortions do not occur in the case of
electrons, as indicated by the strong performance of
the fiTQun identification for those particles, which
suggests that the CNN recognizes a bad vertex as
evidence towards a muon classification by exclu-
sion. To verify that the CNN is not exploiting the
failure of fiTQun to artificially inflate its own per-
formance, the analysis was re-conducted using the
true vertex position and direction. As expected, the
images returned to the normal ring-shapes and the
algorithm did not lose performance for muons in
the region where fiTQun failed.

V Conclusion

Particle identification in water Cherenkov detectors
is done by comparing the Cherenkov profiles of
different rings. Since the PMTs act as pixels in an
image, and ring shape is a qualitative attribute, it is
a natural solution to implement image recognition
machine learning methods to classify them. We
tested this approach using a custom CNN running
on simulated events in the Super-K detector.

The Super-K standard analysis fitting algorithm
is specifically tuned for the problem of electron-
muon separation, with complex modelling of
Cherenkov light moving and scattering in the detec-
tor. The CNN, however, has the advantage that it
requires no prior knowledge of Cherenkov physics,
and is only tuned in a few generic ways. In fact, all
the ring details, besides the initial filters, are learned
automatically by the algorithm. The comparable
performance of the CNN to the standard particle
identification is promising, and these results may
be of interest for future analysis.

VI Acknowledgements

I would like to thank Stefania Bordoni at CERN
and Hirohisa Tanaka at The University of Toronto
for their careful supervision throughout the sum-
mer, as well as NSERC and Univeristy of Toronto
for funding my research. I am also grateful to-
wards The Institute for Particle Physics for giving
me the unique opportunity to participate in the
CERN Summer Student Program.

References

[1] The Super-Kamiokande detector Nucl. Instrum.
Meth. A501 (2003) 418-462

[2] TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available
from tensorflow.org

[3] Improving The T2K Oscillation Analysis With
fiTQun. Poster by Andrew Missert.

t2k.org/docs/poster/076

[4] Abe K. et al. (the T2K collaboration), Mea-
surements of Neutrino Oscillation in appearance
and disappearance channels by the T2K experiment
with 6.6× 1020 protons on target. Phys. Rev. D
91, 072010 (2015).

8



Ring Identification Algorithm — August 2016 — IPP Summer Student 2016

[5] Notes from the Stanford CS class CS231n: Con-
volutional Neural Networks for Visual Recog-
nition:

cs231n.github.io/convolutional-networks/

9


	Introduction
	Cherenkov Radiation
	Machine Learning
	Simple Network
	Convolutional Neural Networks


	Data and Processing
	Image Production

	The Algorithm
	Network Architecture
	Network Training

	Results
	Standard Analysis
	Performance Comparison

	Conclusion
	Acknowledgements

