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Abstract

The observation of the production cross-section of a top-antitop pair in association with the

Higgs boson (tt̄H) with the ATLAS detector is one of the highest priorities in the physics

plan at 13 TeV energies. MultiVariate Analysis techniques are planned to be implemented in

the tt̄H multi-lepton channel during Run 2 data analysis as an improvement to the “cut and

count” method used in Run 1. In this work, the Boosted Decision Trees and Neural Network

algorithms are tested in tt̄H final states with two leptons with same sign electric charge and

adjusted in order to obtain better sensitivity and higher separation power between signal

and background compared to the counting experiment from Run 1.



Chapter 1

Introduction

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle collider.

It was started in September 2008 and sought to test the predictions of high-energy physics

from the Standard Model. After the long shutdown of the LHC from 2013 to 2015, the

second run recently started on June 3rd, 2015. The ATLAS (A Toroidal Lhc ApparatuS)

collaboration will continue studying the Higgs processes, this time at higher energies, to

improve upon the measurements of Run 1 (2009-2013) and access rare processes to explore

new physics predictions.

A considerable amount of work must be done in order to upgrade the analysis of the in-

coming data. The focus of this project will be specifically on the improvement of the search

for the associated production of tt̄ (top-antitop pair) and a Higgs boson. The Run 1 tt̄H

ATLAS analysis was done without MultiVariate Analysis (MVA) techniques (described in

Chapter 5); the implementation of such techniques in Run 2 could significantly increase the

sensitivity of the analyses and help achieve the 5 standard-deviation excess over the back-

ground only hypothesis in the measurement of the tt̄H cross-section (see Chapter 4).

The project involves becoming familiar with the analysis from Run 1 and the idea of a

multivariate analysis (pros/cons of different algorithms), implementing the Toolkit for Mul-

tiVariate Analysis (TMVA) and comparing the performance of Boosted Decision Trees and

Neutral Network algorithms (explained in Section 5.2) within TMVA. The final goal is to

study the separation power between signal (tt̄H) and background from kinematic variables,

and to build a “discriminant” (see Section 6.2) from these variables using MVA techniques.
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Chapter 2

The Standard Model

The Standard Model of Particle Physics is the current most widely accepted theory of fun-

damental particles and their interactions. It was developed in the early 1970’s and has

been successful in explaining most experimental results and in predicting most observed

phenomena [6]. While it remains the theory which best represents the extent of our current

understanding of particle physics, its limitations (such as its inability to explain the nature

of dark matter, gravity or the excess of matter vs antimatter in our universe) hint at the fact

that there is a next generation of theories that might better explain the laws of physics. An

in-depth study of the outcomes of high-energy collisions will give an indication as to where

the Standard Model begins to fail.

In its current state, the Standard Model includes three forces (weak, strong and electro-

magnetic) and two types of fundamental particles, each of which is separated into subcate-

gories.

1. Elementary Fermions - Fermions have fractional spin. These are the particles that

constitute matter and come with an associated antiparticle (particle of same mass but

opposite charge). There are two types of fermions:

(a) Quarks - Quarks come in six flavors and are associated in pairs, namely up(u)/down(d),

charm(c)/strange(s) and top(t)/bottom(b). The analysis presented here will

mainly focus on the top quark, which has the particularity of being the heav-
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iest of the fundamental particles at 173.34 ± 0.27 (stat) ± 0.71 (syst) [4] GeV1

and thus of having the strongest coupling to the Higgs field, as couplings to the

Higgs boson have the characteristic that they are proportional to the mass of the

particle. Quarks interact through all three forces and make up “hadrons” such as

protons, neutrons, pions, etc.

(b) Leptons - These consist of electrons (e), muons (µ) and taus (τ), called lepton

flavors, as well as their corresponding neutrinos (ν), organized in three generations

similarly to the quarks. All leptons interact through the weak force; charged

leptons (e, µ, τ) also interact through the electromagnetic force.

2. Bosons - Bosons are the force particles and have integer spin. There also two types

of bosons:

(a) Spin-1 Gauge Bosons - Consist of the gluon (g) carrier of the strong force,

photon (γ) carrier of the electromagnetic force and the massive vector bosons (Z,

W+ and W-) carriers of the weak force.

(b) Scalar Boson - The latest addition to the Standard Model is the Higgs boson

which is responsible for giving mass to the fundamental particles. Following the

Higgs boson discovery at CERN in 2012, continuous efforts have been made to

study its properties in order to investigate the validity of the Standard Model’s

predictions.

The structure of the Standard Model can be seen on Figure 2.1 where the red, green and

orange sections contain fermions and the purple and blue sections contain bosons. Antipar-

ticles are not shown.

1Units are chosen such that ~,c = 1; the particle’s mass may be expressed in units of GeV instead of
GeV/c2.
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Figure 2.1: The fundamental particles, as described by the Standard Model. Quarks are in red,
neutrinos in green, charged leptons in orange and gauge bosons in purple and blue. The Higgs
boson is in grey. Original image from [10].
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Chapter 3

The LHC and the ATLAS Detector

The LHC was restarted on June 3rd, 2015 and has recently been producing collisions for

physics analysis at a center-of-mass energy of 13 TeV. Run 1 was started in 2009 and produced

7 and 8 TeV collisions up until the shutdown in 2013. The first run allowed for many new

physics results such as the discovery of the Higgs boson - many of its production and decay

modes were analysed during this time.

3.1 ATLAS Detector

The ATLAS detector is one of the four detectors built around the LHC ring. It is one of

the two “multi-purpose” detectors along with CMS1. This means that ATLAS is built to

detect many different types of long-lived particles. For that purpose, it is composed of three

main sub-detectors with several layers, each fine-tuned for specific measurements, as can

be seen on Figure 3.1. The layers are used to “reconstruct” particles, meaning that the

information coming from the detectors can be combined to infer what kind of particles were

in the collision.

1CMS stands for Compact Muon Solenoid
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Figure 3.1: The ATLAS detector, composed of an inner detector, an elecromagnetic and a hadronic
calorimeter, and a muon spectrometer. It is designed to be sensitive to almost all fundamental
particles: only neutrinos go undetected. Image from [15].

Inner Detector - This is the first layer of detection, and it tracks charged particles that

are deflected by a 2 Tesla magnetic field. The direction of motion and degree of curvature

of the reconstructed tracks of the particles are used to infer their charge and momentum,

respectively.

Calorimeters - The calorimeter is used to “shower” most of the particles by transforming

the primary particle that interacts with the detector material into a cascade of secondary

particles. The output is a cone of tracks (see photons, protons, neutrons and electrons in

Figure 3.1) that can later be reconstructed as a single event and used to gain knowledge of

the energy that the particles deposited in the calorimeter as they were stopped. The first

layer is an electromagnetic calorimeter and is used to detect mainly electrons and photons

via electromagnetic showers, while the second layer is called the hadronic calorimeter and
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is used to detect jets2. In some cases it is possible to resolve the type of quark from which

a jet originates through reconstruction algorithms. One of the most common examples is

“b-tagging”: hadrons containing a b-quark have a relatively long lifetime (about 1.5 ps [5]),

and thus their tracks have a characteristic second vertex from which the cone originates and

that differs from the primary vertex corresponding to the origin of the collision.

Muon Spectrometer - The last piece of the detector is used to track muons, which are

the only detectable particles to pass through the calorimeter almost unaffected. The muon

spectrometer functions in a similar way to the inner detector and is used to very precisely

measure the momentum of the muon.

3.2 Kinematic Variables

The typical outputs of the detectors are called kinematic variables and characterize the

particles’ motion. All coordinates are set with respect to the center of the detector, where

the collisions occur as shown in Figure 3.2.

Figure 3.2: Coordinates in the ATLAS Detector. Image from [17].

2Because of the strong interaction, quarks and gluons are always found in confined states called hadrons.
When created in LHC collisions, quarks and gluons hadronise due to color confinement (color is the quantum
number of the strong interaction) which means that they produce quark-antiquark pairs from the vacuum
to shield and surround them, creating the cones of tracks referred to as “jets”
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The coordinates η and φ denote the angular position of the particle track. φ is the az-

imuthal angle and η is the pseudorapidity related to the polar angle θ as η = −ln[tan(θ/2)].

∆η is invariant under Lorentz boosts in the direction of the beam axis, with η = 0 corre-

sponding to a plane perpendicular to the beam axis and η = ±∞ corresponding to planes

parallel to it. The z-coordinate corresponds to the beam axis.

Distances between tracks are calculated as ∆R =
√

∆η2 + ∆φ2 and are interpreted as

a solid angle from the center of the detector. R is used to denote radial distances from the

collision point.

There are two impact parameters (transverse - d0, and longitudinal - z0), which can be

defined as the point of closest approach to the beam axis as in Figures 3.3a and 3.3b or as

the location of the principal vertex as in Figure 3.3c.
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(a) d0 and z0 relative to the z-axis.
(b) d0 in the XY-plane for events with
only one vertex.

(c) d0 for events with secondary ver-
tices.

Figure 3.3: Impact parameters, as well as θ and φ. z0 is the z-coordinate of the track at the point
of closest approach, and d0 is the signed distance to the z-axis.

Lastly, the parameters pT and ET characterize the particle’s transverse momentum and

transverse energy respectively (i.e., the projection in the transverse (φ) plane) [9], with

pT = psinθ and similarly for ET . There is often an imbalance in energy in the transverse plane

called the “missing transverse energy” or MET which is due to the presence in the collisions

of undetectable particles such neutrinos or other non-detectable hypothetical particles from

non-Standard Model theories.
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Chapter 4

Top Quark

One way to probe the validity of the Standard Model’s predictions is to study the couplings

of the Higgs boson to other fundamental particles. The top quark is the main focus of this

study and ideal for this purpose due to its very strong coupling to the Higgs (the so-called

“Yukawa coupling” [16]). The quantification of the associated production of a top quark

pair and a Higgs boson in high-energy collisions via the measurement of cross-sections (a

measure of the rate of the process, which depends on the number of events recorded and the

luminosity of the beam) would allow for the testing of the Standard Model.

At the LHC energy scales, the main production channel for tt̄H is through gluon-gluon

fusion [14]. The tt̄H process, which generates a top quark, an anti-top quark and a Higgs

boson, is illustrated in the Feynman diagram in Figure 4.1. This process provides the only

direct measurement of the top quark Yukawa coupling, that the cross-section is proportional

to.

The main challenge in performing these measurements is that the tt̄H process is rare in

the Standard Model compared to other Higgs production modes, so very few events from the

total collected events in the collisions will fulfill the requirements to be a tt̄H candidate. It is

therefore very important to be able to select a set of data events from which most of the tt̄H

events are selected (high signal efficiency) and few events from other processes contaminate

this sample (high background rejection).

Top quarks have short lifetimes (≈ 0.5 x 10-24 s [18]) and decay before they can be

observed in the detector. Therefore, they are studied through their decay products (which
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can be seen in the detector). The top quark typically decays to a b-quark and a W+ boson,

which then in turn decays to either an antilepton and a neutrino or a quark-antiquark

pair, while the anti-top decays to W- boson and an anti b-quark. This means that events

containing these particles, collectively called “final states” or “signatures” of the top quark,

are likely to contain a top quark. The Higgs boson is also observed through its decay

products.

The final state studied in this report is the so-called “two leptons same sign” which is

characterized mainly by the presence of two charged leptons (e or µ) of same sign electric

charge (circled in Figure 4.1) and no taus decaying to hadrons as end products of the collision.

This final state targets mostly tt̄H processes, where one of the top/antitop quarks decays

“leptonically” (i.e., the corresponding W-boson decays in a lepton and a neutrino), the

other top/antitop quark decays “hadronically” (i.e., the corresponding W-boson decays in a

quark-antiquark pair), and the Higgs boson decays in two W bosons (this happens 80% of

the time and is the main Higgs-boson decay mode) where at least one of them decays in a

charged lepton of same sign electric charge as the one from the top quark. This state has

the advantage of being rare in the Standard Model and therefore having lower background

rates (i.e. only a few other processes can also result in this same final state). The events

containing this signature can be split into categories with different signal-to-background

ratios, for example, by the number of jets in the event or the lepton flavour which, in

association to requirements on the lepton transverse momentum and isolation1, results in a

higher sensitivity to the tt̄H signal [7]. By searching events with two leptons of same sign,

it is thus possible to “clean up” the set of all events recorded at the LHC and select only

those that are the most likely to be tt̄H events.

1how much energy is deposited around the lepton track
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Figure 4.1: Higgs boson production in association with tt̄ pair, decaying into a final state containing
two leptons of same sign electric charge. Image from [8]

Throughout this report, processes related to tt̄H production and decay will be labeled

as “signal” events. Processes which have the same signatures in the detectors but originate

from different processes are labeled “background”.

The main background processes include tt̄W (Figure 4.2a), tt̄Z (Figure 4.2b) and the tt̄

(Figure 4.2c) events. The tt̄W and tt̄Z processes, collectively called tt̄V , are the associated

production of tt̄ and a vector boson (W,Z), and are considered real backgrounds since these

processes may also decay with two-lepton same-sign signatures. The tt̄ process, on the other

hand, contributes to background through reconstruction errors such as mis-identification

of lepton charge or detection of “non-prompt leptons” (leptons coming from the decay of

hadrons). Estimations for background processes rates come from simulation or auxiliary

measurements using data from regions where a tt̄H signal is not expected.
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(a) The tt̄W process. (b) The tt̄Z process.

(c) The tt̄ process.

Figure 4.2: Background processes for tt̄H.
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Chapter 5

Data Analysis

Once the two-lepton same-sign events have been selected, signal and background events need

to be separated. In Run 1, events were classified as signal or background through the “cut

and count” method which corresponds to applying cuts on kinematic variables, discarding

the events that do not fulfil the requirements. It can be understood as splitting “signal”-

like from “background”-like events through straight lines in the phase space built by these

variables, as illustrated in Figure 5.1a. The stricter the cuts are, the fewer events will survive

the selection, which can lead to large statistical uncertainties on the measurements done on

the final sample. For this reason, the separation method is planned to be changed in Run

2 to what is called a “MultiVariate Analysis” (MVA) technique. These analyses consist of

the use of algorithms to estimate the best way to separate the signal from the background

in the phase space defined by a set of discriminating variables, as shown in Figure 5.1b. The

signal samples’ purity is highly increased and the classification mistakes are reduced.
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(a) The “cut and count” method consists of
creating a straight-line separation for signal
(circles) and background (crosses) in some
phase space defined by variables x1 and x2.

(b) MVA techniques estimate the
signal/background-like regions better
using a set of variables (x1,x2) and can
reduce the classification error.

Figure 5.1: Comparison of classification methods. Red crosses represent background events and
blue circles are signal events. Original images from [13] (Figure 5.1a has been changed from the
original).

An in-depth study of different MVA algorithms is required to find the algorithm with

the best performance. The goal of this project is to compare the performance of different

MVA algorithms in distinguishing signal and background events. The data analysis is done

through ROOT, which is an object-oriented program and library developed by CERN (for

documentation on ROOT see [1]). TMVA is a toolkit to be used within ROOT and allows for

the use and comparison of MultiVariate algorithms. Here, Boosted Decision Trees (BDTs)

and Neural Networks via the commercial package NeuroBayes® (NB®) will be investigated

in detail and optimized to get the best possible tool for a tt̄H analysis with Run 2 data.

5.1 MultiVariate Analysis

The idea of a MultiVariate Analysis is to figure out where the events lie in the phase space,

and produce an output called the “final discriminant” with values between -1 and 1 that

indicates this location. Events that are signal-like according to the information of the input

kinematic variables will be given a final discriminant value close to 1 while events in the

background region will be given a value close to -1. A threshold x0 is selected and all events
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with a discriminant value above x0 are labeled as signal events while all events with a value

below x0 are labeled background.

Because signal and background events tend to have different kinematic variable distribu-

tions, the location in the phase space defined by these variables of any event is determined

through the values that the variables take for that particular event.

In the next two sections, Boosted Decision Trees and Neural Networks will be described.

Note that the algorithms are applied to a “training sample” to create the trees and the

networks, meaning that they are provided with a sample with known signal and background

events. This sample consists of Monte Carlo simulations of signal (tt̄H) processes and of the

different background processes at 8 TeV (Run 1), re-weighted to 13 TeV for Run 2 studies.

5.2 Boosted Decision Trees

Boosted Decision Trees consist of a series of binary splits of the initial set of events such

that for each variable x, a specific value x0 is chosen and all events with values above x0 are

separated from the events with a value below x0. The value of x0 is chosen such that the

two split sub-samples will be purer in either signal or background than the original sample.

The sub-samples are plotted against another variable y and a value y0 is similarly chosen

for this variable, and another split is made. Many splits can be made and a “tree” is grown.

At the end, the small sub-samples are classified as signal or background samples according

to what type of events they are mainly made up of. In Figure 5.2, the first variable chosen

is the transverse momentum (pT ) of one of the leptons; the value of x0 here is 6.08 x 104

MeV. Events with lepton pT of less than that are put on the right sub-sample and those with

higher values are sent to the sub-sample to the left. Other variables are chosen and more

splits are made, for example by number of jets with pT above 25 GeV (nJets25) or pT of the

other lepton.
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Figure 5.2: Decision trees: binary splits for separation of the signal from the background. This is
a tree for the tt̄H vs tt̄ training. The separation is illustrated as S/(S +B) where S is the number
of signal events and B the number of background events. Nodes with values closer to 1 contain
more signal-like events while nodes with values closer to 0 contain more background-like events.
For values “close enough” to 1 or 0, the nodes are labelled S or B. This is the tree #500 out of 850
trees grown during the training; other parameters were set such that the nodes must contain no
less than 2.5% of the total number of events, a maximum amount of 3 separations may be made in
a row (see method parameters on line 231 in Appendix 2).

Many trees are grown with cuts on variables in different orders (i.e., the split on y could

be performed before the split on x ) and then compared to each other. Events that end up

in signal branches on most trees are given a discriminant value close to 1 and those that end

up in background branches are given a value of about -1 [3]. The algorithm is applied on

the events and the outcome is compared to the “true” classification from the Monte-Carlo

simulation while the splits are created; events that have been mis-classified are given more

weight after each tree is built so that they may be correctly classified in the next tree. This

is called the “learning” phase.

17



5.3 NeuroBayes®

The NeuroBayes® tool consists of a neural network of non-linear decisions similar to those

of firing neurons. Unlike decision trees where variables are analysed one by one (“linearly”),

neural networks take in the information from all variables at once and decide if an event

is more signal- or background-like based on the combination of the variable information.

A typical Neural Network can be seen in Figure 5.3: the first layer of neurons contains

the values of the input variables for each event, while the “hidden” layer consists of their

combination, assigning a weight to each connection. Finally, the output neuron contains

the discriminant value that has been assigned to the event. Some neurons are connected

more tightly than others, in order to get the best “chain” possible, meaning that some nodes

(variables) are given more weight in the decision process. Not much is known about the

inner workings of the NeuroBayes® tool due to its non-linearity, although its performance

can be easily checked through the outputs provided by the tool (see Section 6.2) [2], [19].

18



Figure 5.3: Neural Networks are made up of multiple layers. The input layer receives the inputs
directly from the individual variables. The weights are shown as lighter or darker connections
between nodes.

5.4 Classification

After the trees or networks are grown using the training sample, they are applied to a “test

sample” (also from Monte-Carlo) but where the true classification is hidden. The events are

allowed to go down the trees or through the neural networks created in the previous step

and they are labeled as either signal or background depending on the value of discriminant

that they receive. Then, the classification provided by the algorithms in the training phase

is compared to the real classification of the events. If the algorithm performs well (i.e. it

correctly classifies events as signal/background most of the time), it may be used for analysis.

Otherwise, its parameters must be checked or new variables must be investigated, and the

learning period restarted.
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Chapter 6

Event and Object Selection

The input files consist of ROOT TTrees. A TTree contains information about all the events

selected, and is made up of branches. Each branch contains information about the distribu-

tion of the events with respect to a certain variable. For example, one branch can contain

information about the energy of the particles that came out of the collision for each event,

while another branch contains information about the number of jets in each event. One can

use these variables to distinguish signal and background events: the BDT and NeuroBayes®

algorithms “learn” to distinguish the type of event based on these variables. TTrees are use-

ful as they can be used to “cut” on the variables and see the effect of those cuts on other

distributions. For example, events with leading lepton energy of less than 20GeV can be

removed to reduce background; the branches are automatically updated and only the distri-

butions for events which satisfy this requirement are kept. The cuts used in this analysis are

looser than those used in Run 1 to increase statistics of the available simulated dataset and

to use those variables in the MVA training instead of performing cuts on them. An example

of a TTree is provided in Appendix 1.

6.1 TMVA Classification code

TMVA comes with a framework for comparing different algorithms’ performance. One can

manually select which variables to use for the training, and then decide if any preprocessing

is to be done on them (for example, to label them as discrete or continuous variables). Once
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this code is run, it provides the user with a Graphical User Interface, or GUI, that allows

for the visualization of several training parameter outputs. The most important outputs for

this analysis are presented in Section 6.2. Before any real analysis can be done, the code

must be optimized with simulation data; examples of this step are shown below. Some of

the code is provided in Appendix 2.

6.2 Outputs from the GUI

A. Input Variable Distributions

Often variables have different values, or their distributions have different shapes, for signal

vs background events due to kinematic differences in the processes. It is thus important to

understand the physics behind the differences to decide which variables are to be used. An

example of variables with significant separation between signal and background is presented

in Figure 6.1. For the tt̄Z background events in Figure 6.1a, note the peak in the invariant

mass of the two leptons (mll) for background events, due to the two leptons coming from a

Z boson: the peak is at the Z boson mass of about 90 GeV. This peak does not appear on

signal event distributions. Signal events also tend to have more jets due to the Higgs decaying

into two W bosons, one of them possibly decaying hadronically into jets, as illustrated in

Figure 6.1b where the signal distribution (blue) shows that these events contain more jets on

average. If an event has few jets and the invariant mass of the two leptons in it is of about

90 GeV this event is much more likely to be tt̄Z than tt̄H. An event of this type would be

assigned a value close to -1 by the algorithms.

Other backgrounds exhibit these differences in other variable distributions. For example,

the W-boson from the tt̄W background is created through the interaction of ud̄ (that creates

a W+ boson decaying leptonically, resulting in two `+ final signature) or ūd (a W- decaying

leptonically resulting in two `- final signature) quarks. Protons consist of two u and one d

valence quarks making the background ratio higher in the 2`+ category than the 2`- one.

This can be seen in Figure 6.1c where the background (red) peak at -2 is about half the

height of the peak at +2 (meaning that there are about twice as many events with two `+)
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while for signal (blue) the two peaks have the same height.

(a) Invariant mass of the two
leptons for tt̄H signal and
tt̄Z background, expressed in
[GeV] units. The background
distribution is characterized
by a peak at 90GeV.

(b) Number of jets per event
for tt̄H signal and tt̄Z back-
ground.

(c) Sum of lepton electric
charge for tt̄H signal and tt̄W
background.

Figure 6.1: Distributions for a few selected variables with tt̄Z as background (Figures 6.1a and
6.1b) and tt̄W as background (Figure 6.1c).

B. Overtraining and Final Discriminant

The final discriminant (or simply discriminant) shows how signal- or background-like the

events are. The trained algorithm is applied to two orthogonal samples: the training sample

(used to train the MVA and create the trees/networks) and the test sample. The goal is

to have signal (background) events with discriminant values as close to 1 (-1) as possible,

and to have training and testing distributions similar in shape. It is often the case that the

test sample does not yield results that are as good as the training samples due to what is

called “overtraining”: the algorithm learns from the statistical fluctuations of the training

sample instead of from real physics information [11]. This can be seen in Figure 6.2, where

the phase space is divided into signal and background regions in a way that could not be

generalized to other samples (i.e., this shape is defined by the statistical fluctuations of the

location of certain events in the phase space and not the real kinematic distinction between

the two phase space regions).
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Figure 6.2: Overtraining in the (x1,x2) phase space.

Often this may be solved by loosening the constraints on the training parameters, reduc-

ing the separation requirements or by increasing the size of the training sample. If training

and testing events have statistically similar distributions (quantified by the Kolmogorov-

Smirnov test [12], with a value close to 1 indicating identical distributions), then the al-

gorithm is expected to perform well when applied to data. Some of the plots generated

during the updates of the NB® training parameters are shown in Figure 6.3 to illustrate

the improvement. The final discriminant is plotted normalized to the number of events.

The goal here is to have all signal (blue) events accumulated near 1 and all the background

events (read) near -1. In Figure 6.3a the events are not smoothly distributed and one can

see quite a few signal events in the background region (negative discriminant). After a few

adjustments of the parameters and a better selection of input variables, it was possible to

get the distribution to look like the one in Figure 6.3d, where the events are well separated

into two peaks focused at -1 and 1 while the center of the graph is relatively empty. This

would correspond to two distinct regions in the phase space of Figure 5.1.
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(a) One of the first attempts yielded an
output with a highly irregular shape; Neu-
roBayes®default parameters had to be
changed.

(b) The shape was then fixed but the “sig-
nal” distribution was too wide near 1; pre-
processing had to be adjusted.

(c) The shape of the signal and background
distributions were dissimilar; signal-to-
background ratios had to be adjusted.

(d) Final output, all issues fixed. A clear
separation can be seen, and signal can fi-
nally be distinguished from background.

Figure 6.3: Separation of signal and background events for training/testing.

Overtraining checks can also be performed through these plots by comparing the testing

(solid bands) and training (dots) sample distributions - matching shapes indicating less

overtraining since it implies the algorithm always assigns similar values to similar events -

or by looking at the result of the Kolmogorov-Smirnov test printed under the legend. Once

again, values of about 1 for this test indicate similar training/testing sample distributions

while values close to 0 indicate overtraining issues.
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C. ROC curve

The receiver operating characteristic (ROC) curve shows the performance of different al-

gorithms. It plots the signal efficiency (accepting as many true signal events as possible)

and the background rejection (accepting least amount of background events as signal) as

a function of the discriminant threshold. This means that a threshold is selected for the

final discriminant and varied; events with final discriminant above the threshold are selected

as signal events and those below the threshold are rejected. Signal efficiency is measured

through εsig = P (selected and true)
P (true)

where ε is the efficiency, P(selected and true) is the proba-

bility of a signal event being classified as signal and P(true) is the probability of any event

being a signal event. An efficiency of 1 implies all signal events have been classified as signal.

Similarly, background rejection is calculated as (1 − εbkg), where εbkg is the probability of

misclassifying a background event as signal over the probability of an event being a back-

ground event. Once again, a rejection of 1 implies all background events have been correctly

classified as background. ROC curves are used to compare algorithms’ performance (in this

case BDT vs NB®), or to look at the impact on the performance of including additional

variables. Curves closer to the (1,1) point of the graph at the top right (i.e., 100% signal

efficiency and 100% background rejection) distinguish better algorithms for classification.

Algorithms with ROC curves far from (1,1) can be improved through parameter tuning, in

parallel to the study of training plots and improving the input set of variables. Examples

are shown below where parameter optimization and a change of the input variables provided

to the algorithms cause the curve to change from an almost diagonal line in Figures 6.4a

(50% chance of getting the classification right) to the curve in Figure 6.4b which is much

closer to the (1,1) point, corresponding to an algorithm capable of sorting signal events into

a signal sample and background events into a different background sample. In this case,

the red (NB) and blue (BDT) curves are very close to each other, i.e., the algorithms have

comparable performances.

Given the different types of background processes, different decision trees can be built

for different background classifications: for example, one separating tt̄H and tt̄V and an-

other separating tt̄H and tt̄. The tt̄W background is harder to separate from signal. In
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order to increase the separation of the tt̄H vs tt̄W final discriminant, final states with two

positively charged leptons can be separated from those with two negatively charged leptons

(see separation of the sum of lepton charges in Figure 3-2 (right)) as signal-to-background

ratios differ in those two sections. The sample of events can be split into two sub-samples

according to the charge of the leptons in them. A BDT is trained in each category and

then the two are combined. This type of classification is called “category” (since it requires

two different categories out of the sample of events: here, positively- and negatively-charged

leptons) and has a considerably larger separation power, as is illustrated by the ROC curve

in Figure 6.4c where the black curve (Category BDT) is closer to the top right corner than

the original red (simple BDT) curve.

(a) ROC curve for the pa-
rameters as they were in Fig-
ure 6.3a (tt̄ background).

(b) ROC curve with parame-
ters as in Figure 6.3d (tt̄ back-
ground).

(c) ROC curve showing the
improvement in separation
for BDT category classifica-
tion (tt̄W background).

Figure 6.4: ROC Curves for BDT and NeuroBayes®. Note: the training against each type of
background has a different maximal ROC curve associated to it; Figure 6.4a can be compared to
Figure 6.4b since they both correspond to discriminants separating tt̄H and tt̄. From the comparison
of the two plots one can conclude that the parameter selection for the latter is advantageous for
the separation, and the performance of the algorithms is better. Figure 6.4c can only be compared
to other tt̄W outputs, so what one can conclude in this case is that the Category BDT classifier
performs better than the standard BDT.
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Chapter 7

Variable Ranking and Algorithm

Performance

The NB® and BDT algorithms were optimized against tt̄W and tt̄ backgrounds. From

the original 46 variables, the following variables were found to be the ones with the most

separation power (i.e., they provided the best classification when used together). All 46

variables were provided to the algorithms, outputting a raking by separation power taking

into account the correlation between the variables, with the top variables being the most

important ones for classification. The less powerful variables were removed and the ranking

process repeated until the performance of the algorithms was observed to decrease due to

the removal of more variables. The results shown in previous sections were obtained with

the use of the 9 variables selected for tt̄, as presented below.

7.1 tt̄ Background

The following variables were used to separate tt̄ background from tt̄H signal events. Some

of these variables are individual particles’ kinematic variables, such as lep1Pt (see Table 7.1

for variable descriptions) while others are general event variables, such as nJets25 or even

variables relating two particles, like the distance in R or η of the particles. All of these

variables are provided in the input TTrees.
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Ranking Variable Name Definition

1 mll invariant mass of the two leptons
2 deltaRl1l2 ∆R between the two leptons
3 deltaEtal1l2 ∆η between the two leptons
4 nJets25 number of jets with pT of at least 25 GeV in the event
5 nBJets25 number of jets with pT of at least 25 GeV coming from a b-quark
6 MET missing transverse energy
7 Ht sum of the pT of the two leptons and of the jets in the event
8 lep1Pt pT of the lepton with the highest energy (leading lepton)
9 lep2Pt pT of the other lepton (subleading lepton)

Table 7.1: Variables used in the classification of tt̄H signal events vs tt̄ background events.

The use of these variables results in the ROC curve presented in Figure 7.1 for the two

algorithms. The red (NB®) and black (BDT) curves are almost perfectly overlaid, meaning

that the two algorithms perform equally well; they are both able to separate signal and

background with similar signal efficiency and background rejection.

Figure 7.1: Signal efficiency vs background rejection for the tt̄ background for Neural Networks and
Boosted Decision Trees built from the 9 variables presented above. They both perform extremely
well, as is illustrated by the fact that the curve approaches the (1,1) point.

It is important to note, nevertheless, that the Neural Network shows less overtraining

than BDT, i.e. NB® is less likely to be affected by statistical fluctuations. This can be seen
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in Figure 7.2 where the testing and training distributions are much more similar to each

other for NeuroBayes® than for BDT, as indicated by the Kolmogorov-Smirnov test for

signal and background. Therefore, NeuroBayes® is expected to perform better than BDT

on data.

(a) Overtraining for Neural Networks -
distributions look similar to each other
and Kolmogorov-Smirnov test statistic
is close to 1.

(b) Overtraining for Boosted Decision
Trees - distributions look slightly differ-
ent in shape and Kolmogorov-Smirnov
test statistic value is close to 0.

Figure 7.2: Overtraining check for tt̄ background shows that NeuroBayes® might perform better
on data.

7.2 tt̄W Background

For the tt̄H vs tt̄W background MVA training, good separation was more difficult to achieve.

In this case, different variables had to be used, and a Category classifier had to be introduced.

The variables had different rankings for the different algorithms; NeuroBayes® was able

to separate signal and background better with a certain set of variables while BDT performed

better with a different set, as can be seen in the rankings shown in Table 7.2.
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This variable list was chosen by first using all variables available (see Figure 7.3a) and then

removing the lowest ranked variables until the ROC curve was seen to fall due to the removal

of these variables (see Figure 7.3c). Using too many variables takes too much computing

time and is inefficient, while using too few does not allow for proper signal/background

separation and classification. The optimal point is the one with the fewest variables for the

highest amount of separation. This point is the one with the 22 variables presented below

and can be seen in Figure 7.3b, with curves almost identical to those of Figure 7.3a. Taking

out only 4 extra variables and using the algorithms with 18 variables leads to the curves in

Figure 7.3c showing a lower performance (it is closer to a diagonal line, and the curve gets

“bumpy”), especially for the BDT algorithm (red curve).

(a) ROC curves for Neural
Networks and Boosted Deci-
sion Trees when using 41 vari-
ables. The separation is very
good as the curves are close to
the top right corner.

(b) ROC curves for Neural
Networks and Boosted De-
cision Trees when using 22
variables. The separation is
still very good and the algo-
rithm is now much faster since
it deals with about half the
amount of variables.

(c) ROC curves for Neural
Networks and Boosted Deci-
sion Trees when using 18 vari-
ables. The separation power
is decreased.

Figure 7.3: ROC Curves for different sets of input variables.

Using only the top 10 variables (to make the algorithms faster), the outputs in Figure 7.4

were produced to investigate the specific type of BDT that should be used. The types

available in TMVA include BDTM (takes into account misclassifications of Monte-Carlo

events and attempts to correct them), BDTS (optimizes tree growth by taking into account

the separation at each branch using the formula S√
S+B

where S is the number of signal

events and B is the number of background events) and BDTD (decorrelates variables before

using them), as well as the Category classifier versions of some of them. The BDT and

BDTM algorithms were found to be the most effective at classifying events when used with
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the Category option; this can be seen from the fact that their corresponding curves are the

closest to the top right corner of the plot. Neural Networks with categories were not explored

as NeuroBayes® does not have a Category option.

Figure 7.4: Different types of BDT classification algorithms were explored; BDT Category (black)
and BDTM Category (green) perform better than the other versions of this algorithm.

Using the set of 22 variables, BDT and BDT Category were compared to the Neu-

roBayes® algorithm with the latter performing significantly less well. As can be seen in

Figure 7.3b, BDT Category (black curve) was able to separate signal and background events

with the highest efficiency, indicating that for this background BDT Category works much

better.

The overtraining check outputs, on the other hand, follow the same trend as the ones for

tt̄ meaning that NeuroBayes® might still work better than BDT when applied to data as

it is less overtrained.
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(a) Overtraining check for NeuroBayes. (b) Overtraining check for BDTCat
(BDT Category).

Figure 7.5: Overtraining checks show that NeuroBayes is less influenced by statistical fluctuations,
as illustrated by the higher value of the Kolmogorov-Smirnov test.

7.3 tt̄Z Background

The expected contribution of the tt̄Z process at 13 TeV is approximately 1
3

of the tt̄W

contribution in the two-lepton same-sign channel [8]. For simplicity, and because tt̄Z events

tend to have similar kinematic distributions to tt̄W events, the two are often combined into a

single tt̄V background and trained together or, alternatively, the trees/networks are trained

against tt̄W and then applied to the tt̄Z background.
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Chapter 8

Conclusion

The BDT and Neural Network algorithms were optimized for the separation of tt̄H signal

from tt̄ and tt̄W backgrounds separately, showing different separation power for the different

backgrounds. For tt̄ backgrounds, Neural Networks are the ideal candidate as they perform

as well as BDT on Monte Carlo events but are less affected by statistical fluctuations (less

likely to be overtrained). For tt̄W , Boosted Decision Trees have a better performance as

seen on the ROC curves in Figure 7.3b, with the BDT Category classifier significantly better

at discriminating between signal and background events. Neural Networks are nevertheless

less affected by statistics and might still be a valid candidate towards the tt̄H Run 2 data

analysis.

Before these algorithms are ready to be used in the Run 2 tt̄H analysis, the tt̄V back-

ground should be investigated and trained as a single background, and new topological

variables (which describe the shape of the event, e.g., whether the particles were projected

along the beam axis or in a spherical shape after the collision) could be created in order to

test their impact on the separation power of the final discriminant.
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Appendices

Appendix 1: ROOT TTrees

Figure 8.1: A TTree called signal_nom for the tt̄H events, with branches (to the left) and the
variable nJets25 plotted (right).
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Figure 8.2: Using the TTree from Figure 8.1, the variable nJets25 is plotted after applying a cut
that selects only events with leading lepton pT of at least 300GeV (lep1Pt>300e3).

Appendix 2: TMVAClassificationCategory.C

Code for loading input trees, declaring methods used (BDT and NN) and setting the testing

parameters as well as declaring variables.

1 // @(#) root /tmva $Id : TMVAClassi f icationCategory .C, v 1 .36 2009−04−14 13 : 0 8 : 1 3
andreas . hoecker Exp $

2 /∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 ∗ Pro j e c t : TMVA − a Root−i n t e g r a t e d t o o l k i t f o r m u l t i v a r i a t e data a n a l y s i s
∗

4 ∗ Package : TMVA
∗

5 ∗ Root Macro : TMVAClassi f icationCategory
∗

6 ∗
∗

7 ∗ This macro prov ide s examples f o r the t r a i n i n g and t e s t i n g o f the
∗

8 ∗ TMVA c l a s s i f i e r s in c a t e g o r i s a t i o n mode .
∗

9 ∗
∗
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10 ∗ As input data i s used a toy−MC sample c o n s i s t i n g o f f our Gaussian−
d i s t r i b u t e d ∗

11 ∗ and l i n e a r l y c o r r e l a t e d input v a r i a b l e s with category ( eta ) dependent
∗

12 ∗ p r o p e r t i e s .
∗

13 ∗
∗

14 ∗ For t h i s example , only F i sher and L ike l i hood are used . Run via :
∗

15 ∗
∗

16 ∗ root − l TMVAClassi f icationCategory .C
∗

17 ∗
∗

18 ∗ The output f i l e ”TMVA. root ” can be analysed with the use o f ded icated
∗

19 ∗ macros ( s imply say : root − l <macro .C>) , which can be conven i ent ly
∗

20 ∗ invoked through a GUI that w i l l appear at the end o f the run o f t h i s macro .
∗

21

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

22

23 #inc lude <c s t d l i b>
24 #inc lude <iostream>
25 #inc lude <map>
26 #inc lude <s t r i ng>
27

28 #inc lude ”TChain . h”
29 #inc lude ” TFile . h”
30 #inc lude ”TTree . h”
31 #inc lude ” TString . h”
32 #inc lude ”TObjString . h”
33 #inc lude ”TSystem . h”
34 #inc lude ”TROOT. h”
35 #inc lude ”TPluginManager . h”
36

37

38 #i f not de f ined ( CINT ) | | de f ined ( MAKECINT )
39 // needs to be inc luded when makecint runs (ACLIC)
40 #inc lude ”TMVA/MethodCategory . h”
41 #inc lude ”TMVA/ Factory . h”
42 #inc lude ”TMVA/ Tools . h”
43 #e n d i f
44

45 // two types o f category methods are implemented
46 Bool t UseOffsetMethod = kTRUE;
47

48 void TMVAClassi f icationCategory ( )
49 {
50 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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51 // Example f o r usage o f d i f f e r e n t event c a t e g o r i e s with c l a s s i f i e r s
52

53 std : : cout << std : : endl << ”==> Star t TMVAClassif icationCategory ” << std : :
endl ;

54

55 // This l oads the l i b r a r y
56 TMVA: : Tools : : In s tance ( ) ;
57

58 // to get a c c e s s to the GUI and a l l tmva macros
59 TString tmva dir ( TString ( gRootDir ) + ”/tmva” ) ;
60 i f ( gSystem−>Getenv ( ”TMVASYS” ) )
61 tmva dir = TString ( gSystem−>Getenv ( ”TMVASYS” ) ) ;
62 gROOT−>SetMacroPath ( tmva dir + ”/ t e s t / : ” + gROOT−>GetMacroPath ( ) ) ;
63 gROOT−>ProcessL ine ( ” . L TMVAGui.C” ) ;
64

65

66 bool batchMode = f a l s e ;
67

68 // Create a new root output f i l e .
69 TString outf i leName ( ”TMVA. root ” ) ;
70 TFile ∗ outputF i l e = TFile : : Open( outf i leName , ”RECREATE” ) ;
71

72 // Create the f a c t o r y ob j e c t ( s ee TMVAClassif ication .C f o r more in fo rmat ion
)

73

74 std : : s t r i n g fac toryOpt ions ( ” !V : ! S i l e n t : Transformations=I ” ) ;
75 i f ( batchMode ) fac toryOpt ions += ” : ! Color : ! DrawProgressBar” ;
76

77 TMVA: : Factory ∗ f a c t o r y = new TMVA: : Factory ( ” TMVAClassi f icationCategory ” ,
outputFi le , f ac toryOpt ions ) ;

78

79 // Def ine the input v a r i a b l e s used f o r the MVA t r a i n i n g
80

81 // L2SS c r i t e r i a
82 // fac tory−>AddSpectator ( ” p a s s s s ” , ’F ’ ) ;
83 // fac tory−>AddSpectator ( ” pass notaus ” , ’F ’ ) ;
84 // fac tory−>AddVariable ( ” p a s s t w o j e t s ” , ’ I ’ ) ;
85

86 // weights
87 // fac tory−>AddVariable ( ”mcWgt14TeV” , ’F ’ ) ;
88 // fac tory−>AddVariable ( ”mcWgt13TeV” , ’F ’ ) ;
89 // fac tory−>AddVariable ( ”pileupWgt ” , ’F ’ ) ;
90 // fac tory−>AddVariable ( ”mc weight ” , ’F ’ ) ;
91 // fac tory−>AddVariable ( ” l 1 we i gh t ” , ’F ’ ) ;
92 // fac tory−>AddVariable ( ” l 2 we i gh t ” , ’F ’ ) ;
93 // fac tory−>AddVariable ( ” t r i g g e r w e i g h t ” , ’F ’ ) ;
94 // fac tory−>AddVariable ( ” event we ight ” , ’F ’ ) ;
95

96 // Other v a r i a b l e s
97 // Al l i n t e g e r v a r i a b l e s were changed to f l o a t s s i n c e the Appl i ca t ion code

does not work with i n t
98 // fac tory−>AddVariable ( ”pass LeppT20 ” , ’ I ’ ) ;
99 // fac tory−>AddVariable ( ” p a s s e l e c e t a ” , ’ I ’ ) ;

100 // fac tory−>AddVariable ( ” pass muoniso ” , ’ I ’ ) ;
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101 // fac tory−>AddVariable ( ” p a s s f o u r j e t s ” , ’ I ’ ) ;
102 // fac tory−>AddVariable ( ” p a s s o n e b j e t s ” , ’ I ’ ) ;
103 // fac tory−>AddVariable ( ”nLep10 ” , ’ I ’ ) ; // constant a f t e r cuts !
104 // fac tory−>AddVariable ( ” ntaus ” , ’ I ’ ) ; // not v . good
105 f ac to ry−>AddVariable ( ” mll ” , ’F ’ ) ;
106 // fac tory−>AddVariable ( ” chanDilep ” , ’ I ’ ) ;
107 // fac tory−>AddSpectator ( ” lep chargesumFloat ” , ’F ’ ) ;
108 f ac to ry−>AddVariable ( ” d e l t a R l 1 l 2 ” , ’F ’ ) ;
109 f ac to ry−>AddVariable ( ” d e l t a E t a l 1 l 2 ” , ’F ’ ) ;
110 f ac to ry−>AddVariable ( ” d e l t a P h i l 1 l 2 ” , ’F ’ ) ;
111 f ac to ry−>AddVariable ( ”SumOfEtal1l2” , ’F ’ ) ;
112 f ac to ry−>AddVariable ( ” n J e t s t o t a l F l o a t ” , ’F ’ ) ;
113 f ac to ry−>AddVariable ( ” nJets25Float ” , ’F ’ ) ;
114 // fac tory−>AddVariable ( ” nBJets25Float ” , ’F ’ ) ;
115 // fac tory−>AddVariable ( ” nJets30Float ” , ’F ’ ) ;
116 // fac tory−>AddVariable ( ” nJets40Float ” , ’F ’ ) ;
117 // fac tory−>AddVariable ( ” nJets50Float ” , ’F ’ ) ;
118 // fac tory−>AddVariable ( ” nJets60Float ” , ’F ’ ) ;
119 // fac tory−>AddVariable ( ” nJets70Float ” , ’F ’ ) ;
120 // fac tory−>AddVariable ( ” j e t p t ” , ’F ’ ) ;
121 f ac to ry−>AddVariable ( ” j e t e t a ” , ’F ’ ) ;
122 // fac tory−>AddVariable ( ” j e t p h i ” , ’F ’ ) ;
123 // fac tory−>AddVariable ( ” I s b j e t ” , ’ I ’ ) ; // boolean
124 f ac to ry−>AddVariable ( ”met” , ’F ’ ) ;
125 // fac tory−>AddVariable ( ” met phi ” , ’F ’ ) ;
126 // fac tory−>AddVariable ( ”mt” , ’F ’ ) ;
127 f ac to ry−>AddVariable ( ” meff ” , ’F ’ ) ;
128 // fac tory−>AddVariable ( ”ht ” , ’F ’ ) ;
129 f ac to ry−>AddVariable ( ” l e p f l a v o u r F l o a t ” , ’F ’ ) ;
130

131 // l epton #1
132 // fac tory−>AddVariable ( ” l ep1Ele ” , ’ I ’ ) ; // boolean
133 f ac to ry−>AddVariable ( ” lep1Pt ” , ’F ’ ) ;
134 f ac to ry−>AddVariable ( ” lep1Eta ” , ’F ’ ) ;
135 // fac tory−>AddVariable ( ” lep1Phi ” , ’F ’ ) ;
136 // fac tory−>AddVariable ( ” l e p 1 t r k i s o ” , ’F ’ ) ;
137 // fac tory−>AddVariable ( ” l e p 1 c a l o i s o ” , ’F ’ ) ;
138 // fac tory−>AddVariable ( ” l ep1z0 ” , ’F ’ ) ;
139 // fac tory−>AddVariable ( ” l e p 1 z 0 s i n ” , ’F ’ ) ;
140 // fac tory−>AddVariable ( ” l e p 1 d 0 s i g ” , ’F ’ ) ;
141 // fac tory−>AddVariable ( ” l ep1chargeF loat ” , ’F ’ ) ;
142 // fac tory−>AddVariable ( ” l 1 we i gh t ” , ’F ’ ) ;
143 f ac to ry−>AddVariable ( ” minde l taRl1 j e t ” , ’F ’ ) ;
144

145 // l epton #2
146 // fac tory−>AddVariable ( ” l ep2Ele ” , ’ I ’ ) ; // boolean
147 f ac to ry−>AddVariable ( ” lep2Pt ” , ’F ’ ) ;
148 f ac to ry−>AddVariable ( ” lep2Eta ” , ’F ’ ) ;
149 // fac tory−>AddVariable ( ” lep2Phi ” , ’F ’ ) ;
150 // fac tory−>AddVariable ( ” l e p 2 t r k i s o ” , ’F ’ ) ;
151 // fac tory−>AddVariable ( ” l e p 2 c a l o i s o ” , ’F ’ ) ;
152 // fac tory−>AddVariable ( ” l ep2z0 ” , ’F ’ ) ;
153 // fac tory−>AddVariable ( ” l e p 2 z 0 s i n ” , ’F ’ ) ;
154 // fac tory−>AddVariable ( ” l e p 2 d 0 s i g ” , ’F ’ ) ;
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155 // fac tory−>AddVariable ( ” l ep2chargeF loat ” , ’F ’ ) ;
156 // fac tory−>AddVariable ( ” l 2 we i gh t ” , ’F ’ ) ;
157 f ac to ry−>AddVariable ( ” minde l taRl2 j e t ” , ’F ’ ) ;
158

159 // You can add so−c a l l e d ” Spectator v a r i a b l e s ” , which are not used in the
MVA tra in ing ,

160 // but w i l l appear in the f i n a l ” TestTree ” produced by TMVA. This TestTree
w i l l conta in the

161 // input v a r i a b l e s , the response va lue s o f a l l t r a in ed MVAs, and the
s p e c t a t o r v a r i a b l e s

162 // fac tory−>AddSpectator ( ” eta ” ) ;
163

164 // Load the s i g n a l and background event samples from ROOT t r e e s
165 // TFile ∗ input (0 ) ;
166 // TString fname ( ”” ) ;
167 // i f ( UseOffsetMethod ) fname = ” data / t o y s i g b k g c a t e g o f f s e t . root ” ;
168 // e l s e fname = ” data / t o y s i g b k g c a t e g v a r o f f . root ” ;
169 // i f ( ! gSystem−>AccessPathName ( fname ) ) {
170 // f i r s t we try to f i n d tmva example . root in the l o c a l d i r e c t o r y
171 // std : : cout << ”−−− TMVAClassi f icationCategory : Access ing ” << fname <<

std : : endl ;
172 // input = TFile : : Open( fname ) ;
173 //}
174

175

176 //
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

177 // Load Input TTrees
178 //

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

179

180 TString signalname = ” . / ttHWWfloat . root ” ;
181 TString backgroundname = ” . / ttWfloat . root ” ;
182 // other backgrounds : mc12 ttZ . root , mc12 ttHtautau . root , mc12 ttHZZ . root ,

mc12 ttbar . root
183

184 TFile ∗ s i g n a l i n p u t = TFile : : Open( s ignalname ) ;
185 TFile ∗backgroundinput = TFile : : Open( backgroundname ) ;
186

187 std : : cout << ”−−− TMVAClassi f icationCategroy : Using input f i l e s : ” <<
s i gna l i nput−>GetName ( ) << ” and ” << backgroundinput−>GetName ( ) << std : :
endl ;

188

189

190 TTree ∗ s i g n a l = ( TTree∗) s i gna l i nput−>Get ( ” s ignal nom ” ) ;
191 TTree ∗background = ( TTree∗) backgroundinput−>Get ( ”ttw nom” ) ;
192

193 /// Global event weights per t r e e ( s ee below f o r s e t t i n g event−wise weights
)

194 Double t s ignalWeight = 1 . 0 ;
195 Double t backgroundWeight = 1 . 0 ;
196
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197 /// You can add an a r b i t r a r y number o f s i g n a l or background t r e e s
198 f ac to ry−>AddSignalTree ( s i gna l , s ignalWeight ) ;
199 f ac to ry−>AddBackgroundTree ( background , backgroundWeight ) ;
200

201 f ac to ry−>SetS igna lWeightExpress ion ( ”mcWgt13TeV∗pileupWgt∗mc weight∗
l umiSca l ing ” ) ;

202 f ac to ry−>SetBackgroundWeightExpression ( ”mcWgt13TeV∗pileupWgt∗mc weight∗
l umiSca l ing ” ) ;

203

204 // Apply a d d i t i o n a l cuts on the s i g n a l and background samples ( can be
d i f f e r e n t )

205 // Cuts f o r 2LSS channel
206 TCut mycuts = ” p a s s s s && pass notaus ” ;
207 TCut mycutb = ” p a s s s s && pass notaus ” ;
208

209 // Te l l the f a c t o r y how to use the t r a i n i n g and t e s t i n g events
210 f ac to ry−>PrepareTrainingAndTestTree ( mycuts , mycutb ,
211 ” nTra in S igna l =0: nTrain Background =0:

SplitMode=Random : NormMode=EqualNumEvents : ! V” ) ;
212 // no requi rements on t r a i n i n g samples except #s i g n a l events must equal #

background events ( EqualNumEvents )
213

214

215

216

217

218

219

220 // −−−− Book MVA methods (NOT Category )
221

222

223 // Boosted Dec i s i on Trees
224

225 // Gradient Boost
226 // fac tory−>BookMethod ( TMVA: : Types : : kBDT, ”BDTG” ,
227 // ” !H : ! V: NTrees =1000: MinNodeSize=2.5%:BoostType=

Grad : Shrinkage =0.10: UseBaggedBoost : BaggedSampleFraction =0.5 : nCuts=20:
MaxDepth=2” ) ;

228

229 // Adaptive Boost
230 f ac to ry−>BookMethod ( TMVA: : Types : : kBDT, ”BDT” ,
231 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:

BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=GiniIndex : nCuts=20” ) ;

232

233 // 850 t r e e s with nodes o f at l e a s t 2.5% the s i z e o f the o r i g i n a l dataset
, max o f 3 s p l i t s per t ree , s epara te by GiniIndex .

234

235 // Bagging
236 // fac tory−>BookMethod ( TMVA: : Types : : kBDT, ”BDTB” ,
237 // ” !H : ! V: NTrees=400: BoostType=Bagging :

SeparationType=GiniIndex : nCuts=20” ) ;
238

239 // Deco r r e l a t i on + Adaptive Boost
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240 // fac tory−>BookMethod ( TMVA: : Types : : kBDT, ”BDTD” ,
241 // ” !H : ! V: NTrees=850: MinNodeSize=2.5%:MaxDepth=3:

BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=GiniIndex : nCuts=20: VarTransform=D” ) ;

242

243 // Allow Using Fi sher d i s c r im inant in node s p l i t t i n g f o r ( s t rong ) l i n e a r l y
c o r r e l a t e d v a r i a b l e s

244 // fac tory−>BookMethod ( TMVA: : Types : : kBDT, ”BDTMitFisher ” ,
245 // ” !H : ! V: NTrees=50: MinNodeSize=2.5%: UseFisherCuts : MaxDepth=3:

BoosType=AdaBoost : AdaBoostBeta =0.5 : SpearationType=GiniIndex : nCuts=20”) ;
246

247 // i f ( Use [ ” NeuroBayes ” ] ) { //NB
248 TString NBPreproString=” : NBIndiPreproFlagByVarname=” ;
249

250 // Preproce s s ing f o r v a r i a b l e s : use 14 f o r cont inuous and 18 f o r d i s c r e t e
v a r i a b l e s

251

252 NBPreproString += ” mll =14,” ;
253 // NBPreproString += ” lep chargesumFloat =18 ,”;
254 NBPreproString += ” d e l t a R l 1 l 2 =14,” ;
255 NBPreproString += ” d e l t a E t a l 1 l 2 =14,” ;
256 NBPreproString += ” d e l t a P h i l 1 l 2 =14,” ;
257 NBPreproString += ”SumOfEtal1l2=14,” ;
258 NBPreproString += ” n J e t s t o t a l F l o a t =18,” ;
259 NBPreproString += ” nJets25Float =18,” ;
260 // NBPreproString += ” nBJets25Float =18 ,”;
261 // NBPreproString += ” nJets30Float =18 ,”;
262 // NBPreproString += ” nJets40Float =18 ,”;
263 // NBPreproString += ” nJets50Float =18 ,”;
264 // NBPreproString += ” nJets60Float =18 ,”;
265 // NBPreproString += ” nJets70Float =18 ,”;
266 // NBPreproString += ” j e t p t =14 ,”;
267 NBPreproString += ” j e t e t a =14,” ;
268 // NBPreproString += ” j e t p h i =14 ,”;
269 NBPreproString += ”met=14,” ;
270 // NBPreproString += ” met phi =14 ,”;
271 // NBPreproString += ”mt=14 ,”;
272 NBPreproString += ” meff =14,” ;
273 // NBPreproString += ”ht =14 ,”;
274 // NBPreproString += ” lep1Ele =18 ,”;
275 NBPreproString += ” lep1Pt =14,” ;
276 NBPreproString += ” lep1Eta =14,” ;
277 // NBPreproString += ” lep1Phi =14 ,”;
278 // NBPreproString += ” l e p 1 t r k i s o =14 ,”;
279 // NBPreproString += ” l e p 1 c a l o i s o =14 ,”;
280 // NBPreproString += ” lep1z0 =14 ,”;
281 // NBPreproString += ” l e p 1 z 0 s i n =14 ,”;
282 // NBPreproString += ” l e p 1 d 0 s i g =14 ,”;
283 // NBPreproString += ” lep1chargeF loat =18 ,”;
284 // NBPreproString += ” l1 we i gh t =14 ,”;
285 NBPreproString += ” minde l taRl1 j e t =14,” ;
286 // NBPreproString += ” lep2Ele =18 ,”;
287 NBPreproString += ” lep2Pt =14,” ;
288 NBPreproString += ” lep2Eta =14,” ;
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289 // NBPreproString += ” lep2Phi =14 ,”;
290 // NBPreproString += ” l e p 2 t r k i s o =14 ,”;
291 // NBPreproString += ” l e p 2 c a l o i s o =14 ,”;
292 // NBPreproString += ” lep2z0 =14 ,”;
293 // NBPreproString += ” l e p 2 z 0 s i n =14 ,”;
294 // NBPreproString += ” l e p 2 d 0 s i g =14 ,”;
295 // NBPreproString += ” lep2chargeF loat =18 ,”;
296 // NBPreproString += ” l2 we i gh t =14 ,”;
297 NBPreproString += ” minde l taRl2 j e t =14,” ;
298 NBPreproString += ” l e p f l a v o u r F l o a t =18,” ;
299

300

301 f ac to ry−>BookMethod ( TMVA: : Types : : kPlugins , ”NeuroBayes” ,
302 ” !H:V: Ana lys i s : NTra in ingIter =100: Preproce s s ing =112: ShapeTreat=INCL :

TrainingMethod=BFGS”
303 + NBPreproString ) ;
304

305 // parameters as in Run1 a n a l y s i s
306

307

308

309

310

311

312 //CATEGORIES
313 // −−− Categor i sed c l a s s i f i e r
314 //TMVA: : MethodCategory∗ mcat = 0 ;
315

316 // The v a r i a b l e s e t s f o r the Category C l a s s i f i e r
317 TString theCat1Vars = ” mll : d e l t a R l 1 l 2 : d e l t a E t a l 1 l 2 : d e l t a P h i l 1 l 2 :

SumOfEtal1l2 : n J e t s t o t a l F l o a t : nJets25Float : met : meff : lep1Pt : lep1Eta :
minde l taRl1 j e t : lep2Pt : lep2Eta : minde l taRl2 j e t : j e t e t a : l e p f l a v o u r F l o a t ” ;

318 TString theCat2Vars = ” mll : d e l t a R l 1 l 2 : d e l t a E t a l 1 l 2 : d e l t a P h i l 1 l 2 :
SumOfEtal1l2 : n J e t s t o t a l F l o a t : nJets25Float : met : meff : lep1Pt : lep1Eta :
minde l taRl1 j e t : lep2Pt : lep2Eta : minde l taRl2 j e t : j e t e t a : l e p f l a v o u r F l o a t ” ;

319

320

321

322 // BDT
323 TMVA: : MethodBase∗ BDTCat = factory−>BookMethod ( TMVA: : Types : : kCategory , ”

BDTCat” , ”” ) ;
324 mcat = dynamic cast<TMVA: : MethodCategory∗>(BDTCat) ;
325 mcat−>AddMethod( ” lep chargesumFloat >0.0” , theCat1Vars , TMVA: : Types : : kBDT, ”

Category BDT 1” ,
326 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:

BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=GiniIndex : nCuts=20” ) ;

327 mcat−>AddMethod( ” lep chargesumFloat <0.0” , theCat2Vars , TMVA: : Types : : kBDT, ”
Category BDT 2” ,

328 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:
BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=GiniIndex : nCuts=20” ) ;

329

330 //same parameters as be fore , two c a t e g o r i e s
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331

332 //NB DOESN’T WORK WITH CATEGORY CLASSIFICATION
333 /∗ TMVA: : MethodBase∗ NeuroBayesCat = factory−>BookMethod ( TMVA: : Types : :

kCategory , ”NeuroBayesCat ” , ”” ) ;
334 mcat = dynamic cast<TMVA: : MethodCategory∗>(NeuroBayesCat ) ;
335 mcat−>AddMethod(” lep chargesumFloat >0.0” , theCat1Vars , TMVA: : Types : :

kPlugins , ” Category NeuroBayes 1 ” ,
336 ” !H:V: Ana lys i s : NTra in ingIter =100: Preproce s s ing =112: ShapeTreat=INCL :

TrainingMethod=BFGS”
337 + NBPreproString ) ;
338 mcat−>AddMethod(” lep chargesumFloat <0.0” , theCat2Vars , TMVA: : Types : :

kPlugins , ” Category NeuroBayes 2 ” ,
339 ” !H:V: Ana lys i s : NTra in ingIter =100: Preproce s s ing =112: ShapeTreat=INCL :

TrainingMethod=BFGS”
340

341 + NBPreproString ) ;
342 ∗/
343

344 // BDTS
345 // worst one
346 /∗ TMVA: : MethodBase∗ BDTSCat = factory−>BookMethod ( TMVA: : Types : : kCategory

, ”BDTSCat” , ”” ) ;
347 mcat = dynamic cast<TMVA: : MethodCategory∗>(BDTSCat) ;
348 mcat−>AddMethod(” lep chargesum ==2.0” , theCat1Vars , TMVA: : Types : : kBDT, ”

Category BDTS 1 ” ,
349 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:

BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=SDivSqrtSPlusB : nCuts=20” ) ;

350 mcat−>AddMethod(” lep chargesum ==−2.0”, theCat2Vars , TMVA: : Types : : kBDT, ”
Category BDTS 2 ” ,

351 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:
BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=SDivSqrtSplusB : nCuts=20” ) ;

352 ∗/
353

354 // BDTD
355 // not so h e l p f u l
356 /∗TMVA: : MethodBase∗ BDTDCat = factory−>BookMethod ( TMVA: : Types : : kCategory ,

”BDTDCat” , ”” ) ;
357 mcat = dynamic cast<TMVA: : MethodCategory∗>(BDTDCat) ;
358 mcat−>AddMethod(” lep chargesum ==2.0” , theCat1Vars , TMVA: : Types : : kBDT, ”

Category BDTD 1 ” ,
359 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:BoostType=

AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction =0.5 :
SeparationType=GiniIndex : nCuts=20: VarTransform=D” ) ;

360 mcat−>AddMethod(” lep chargesum ==−2.0”, theCat2Vars , TMVA: : Types : : kBDT, ”
Category BDTS 2 ” ,

361 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:
BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=GiniIndex : nCuts=20: VarTransform=D” ) ;

362 ∗/
363

364 // BDTM
365 // best one f o r o v e r t r a i n i n g and sepa ra t i on !
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366 /∗TMVA: : MethodBase∗ BDTMCat = factory−>BookMethod ( TMVA: : Types : : kCategory ,
”BDTMCat” , ”” ) ;

367 mcat = dynamic cast<TMVA: : MethodCategory∗>(BDTMCat) ;
368 mcat−>AddMethod(” lep chargesum ==2.0” , theCat1Vars , TMVA: : Types : : kBDT, ”

Category BDTM 1 ” ,
369 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:

BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=M i s C l a s s i f i c a t i o n E r r o r : nCuts=20” ) ;

370 mcat−>AddMethod(” lep chargesum ==−2.0”, theCat2Vars , TMVA: : Types : : kBDT, ”
Category BDTM 2 ” ,

371 ” !H : ! V: NTrees =850: MinNodeSize=2.5%:MaxDepth=3:
BoostType=AdaBoost : AdaBoostBeta =0.5 : UseBaggedBoost : BaggedSampleFraction
=0.5 : SeparationType=M i s C l a s s i f i c a t i o n E r r o r : nCuts=20” ) ;

372 ∗/
373

374 // −−−− Now you can t e l l the f a c t o r y to t ra in , t e s t , and eva luate the MVAs
375

376 // Train MVAs us ing the s e t o f t r a i n i n g events
377 f ac to ry−>TrainAllMethods ( ) ;
378

379 // −−−− Evaluate a l l MVAs us ing the s e t o f t e s t events
380 f ac to ry−>TestAllMethods ( ) ;
381

382 // −−−−− Evaluate and compare performance o f a l l c on f i gu r ed MVAs
383 f ac to ry−>EvaluateAllMethods ( ) ;
384

385 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
386

387 // Save the output
388 outputFi le−>Close ( ) ;
389

390 std : : cout << ”==> Wrote root f i l e : ” << outputFi le−>GetName ( ) << std : : endl ;
391 std : : cout << ”==> TMVAClassi f icationCategory i s done ! ” << std : : endl ;
392

393 // Clean up
394 d e l e t e f a c t o r y ;
395

396 // Launch the GUI f o r the root macros
397 i f ( !gROOT−>IsBatch ( ) ) TMVAGui( outf i leName ) ;
398 }
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Appendix 3: Distribution of 22 Variables Used for the

Training Against tt̄W
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Appendix 4: Distribution of 9 Variables Used for the

Training Against tt̄
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