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Since the discovery of the Higgs boson in 2012, the most recently confirmed and final piece of
the Standard Model has been rigorously studied in various production modes and decay channels.
However, Run 1 of the LHC did not yield sufficient statistics to resolve production modes in the
H → ZZ∗ → 4l channel. Current and future runs of the LHC will offer sufficient data to do so,
thus machine learning techniques used to separate the two most frequent Higgs boson production
modes - gluon fusion and vector boson fusion - were studied and the findings are presented in this
report. An optimization of boosted decision trees trained on

√
s = 8 TeV ATLAS Monte Carlo data

is presented. The feasibility of improving classification efficiency by using deep neural networks is
also studied and detailed below.

I. INTRODUCTION

The Standard Model and the LHC

The Standard Model

The Standard Model (SM) is currently humankind’s
most complete and consistent theory of all known fun-
damental particles and their interaction via three of
the four known forces of nature - electromagnetism, the
weak nuclear force, and the strong nuclear force. It is a
remarkably successful theory, having predicted the ex-
istence of particles such as the W, Z and Higgs boson
before their discovery as well as being consistent with
almost all experimental observations to date. However,
there is a significant amount of experimental evidence
demonstrating the incompleteness of the SM. Any truly
complete description of nature should include gravity
and a solution to the hierarchy problem - an explana-
tion of why gravitation is so much weaker than the other
three forces. Aside from that, the SM does not contain
a dark matter candidate nor an explanation of dark en-
ergy leaving 84% of the observed matter in the uni-
verse and 95% of the energy content a mystery for now.
Furthermore, the SM neutrinos are massless and thus
do not undergo flavour oscillation which is inconsistent
with observation. The question of how a matter anti-
matter asymmetry of one part per billion arose in the
early universe is also unexplained by the current amount
of CP violation in the SM.

In order to make progress on the problems mentioned
above, it is imperative that the SM be rigorously tested
in order to uncover any subtle inconsistencies with ex-
perimental observation at the LHC. Even small devia-
tions from SM predictions could provide valuable hints
as to what physics beyond the SM might be. Since the
Higgs boson was discovered in 2012, at a mass of 125

GeV, physics in the Higgs sector has been the focus of
many studies being conducted by ATLAS and other ex-
periments at the LHC. At hadron colliders, namely the
LHC, the Higgs boson can be produced in four main
modes: gluon gluon fusion (ggF), vector boson fusion
(VBF), associated production with gauge bosons (ZH &
WH), and associated production with top quarks (tt̄H).

Table I: Higgs boson production modes at the LHC
(
√
s = 8 TeV).

Diagram Mode σ(pb)

a) ggF 19.3+15%
−15%

b) VBF 1.58+3%
−2%

c) ZH & WH 1.11+5%
+5%

d) tt̄H 0.13+12%
−18%

Once a Higgs boson is produced, it subsequently decays
within approximately 10−22 s in its own rest frame. It
can decay through various channels whose branching ra-
tios are depicted as a function of Higgs mass in Figure
1.
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Figure 1: Higgs boson branching ratios as a function of
Higgs mass.

The decay channel of interest for this report is the Higgs
decay into an on shell Z and an off shell Z which
subsequently decay to lepton antilepton pairs, hence
H → ZZ∗ → 4l.

Figure 2: V V → H → ZZ∗ → 4l

This decay is referred to as the Golden Channel due
to the high precision with which e and µ are measured
and due to the fact that the final state is fully recon-
structable with no missing transverse momentum. This
means that even though the H → ZZ∗ → 4l decay has
a small branching ratio (2.5%) when compared to other
decay channels, its clean signature makes it valuable for
analysis.

The LHC

The LHC accelerates protons to ultra relativistic en-
ergies in order to produce the required TeV scale col-
lisions to probe the SM and beyond. It is a 27 km
long pp collider designed to run at centre of mass en-
ergy

√
s = 14 TeV and luminosity L = 1034 cm−2s−1.

There are 1232 high field 8.3 T liquid helium cooled su-
perconducting dipole electromagnets which are required
to direct the beams around the circular path as well as
392 quadrupoles to focus them. It has two ultrahigh vac-
uum beam pipes for opposite momentum proton beams
which cross at four points along the ring. At these cross-
ings, bunches of 1011 protons intersect every 25 ns which

resulted in an average of approximately 20 collisions per
bunch crossing during Run 1.

One of the intersection points is centred at the ATLAS
detector, one of two general purpose detectors at the
LHC and the largest ever built. The inner most part of
ATLAS is a subsystem called the inner detector (ID).
In order of increasing radius, the inner detector is com-
prised of the newly added insertable b-layer (IBL), pixel
detector, semi-conductor tracker (SCT), and straw tube
detectors (TRT). The IBL provides supporting high res-
olution vertexing, impact parameter measurement, and
b-jet tagging alongside the original pixel layers. In the
next layer, the SCT formed of silicon microstrip detec-
tors contributes to momentum measurement as well as
vertex reconstruction. Finally, the last part of the ID is
the TRT which is used for additional particle tracking
as well as electron identification. Following the inner
detector, there is the electromagnetic calorimeter and
hadronic calorimeter which are used to measure the en-
ergy of charged particles, photons, jets, and neutrons.
However, some particles are deeply penetrating, such
as muons, so there is a dedicated muon spectrometer
surrounding ATLAS as the final layer of detectors.

Machine learning

Shallow Machine Learning

Machine learning is a collection of algorithms in which
a classifier or statistical model is iteratively improved
upon by successively processing a set of training data.
The goal is for the model to learn patterns in the train-
ing data that are common to other independent data
sets taken of the same underlying phenomena. Thus, the
model would be a classification tool whose performance
does not depend on the specific set of data given but
is capable of pattern recognition to distinguish signal
and background events. This results in the compression
of multidimensional discriminatory information down to
one variable which separates signal and background.

Figure 3: Classifier output example.
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These models ŷ(xi) are based on receiving sets of in-
put variables xi ∈ X i=1...n, where X is the n dimen-
sional configuration space of inputs, and outputting for
each event a value indicating the model’s prediction of
the event’s class y which for the training set is known.
For example, y = 1 and y = 0 or −1 are often used
to indicate signal and background respectively. Many
techniques of machine learning are based on stacking
layers which isolate more and more complex regions of
X in order to efficiently locate where the signal events
S = {xi|y = 1} lie. This leads to the existence of both
shallow and deep models, where shallow and deep re-
spectively refer to the level of abstraction that the clas-
sifier can attain. Namely, more layers of processing in
the model correspond to a higher potential for learning
abstract nonlinear features of the training data.

Machine learning is an attractive tool for use in parti-
cle physics because the problem defined above is found
in data analysis done on particle collision data. The
problem focused on in this report is that of isolating
Higgs events where the production mode is VBF (y = 1)
from those produced via other processes (y = 0 or −1),
mostly ggF, and the qq → ZZ background given an in-
put of kinematic characteristics (xi, i = 1..n) of the
particles involved. The study of machine learning in
particle physics is motivated by the fact that it is more
efficient to increase the statistical significance of physics
results by using more sophisticated data analysis tech-
niques than by producing more collisions.

Before discussing specific techniques of machine learn-
ing, it is important to first define overfitting: the result
of a classifier learning features specific to the training
set used but not common to other data sets which rep-
resent the same phenomena. Overfitting is screened for
by using separate training and testing data, where if the
classification performance is much better for the train-
ing set than for the testing set it is clear that the model
suffers from overfitting.

Figure 4: Overfitting.

The simplest and most commonly used method for iso-
lating regions of higher statistical significance when
searching for a signal in data is a cut or multiple cuts

{xa > a0, xb > b0...}. This method isolates a single hy-
percube in X and is a useful technique when high statis-
tics are available. Going further, it is possible to use a
decision tree with a specified depth to isolate multiple
hypercubes in X. It is easy to see that these methods
are not optimal, as there is no reason why signal regions
would be rectangular and because blindly increasing the
tree depth to extreme values in order to produce com-
plex geometries leads to overfitting.

Figure 5: Decision tree.

The decision tree shown in Figure 5 is considered a shal-
low classifier due to its simple linear structure. However,
the method of boosting uses the vote of many weak clas-
sifiers trained on re-weighted versions of the training set
to form a strong classifier. Hence, boosted decision trees
(BDTs) are a commonly used high performance classi-
fier in particle physics because they are easy to validate
yet highly effective. However, BDTs are still shallow
and thus have limited ability to discover high level ab-
stract features of the data. This means they perform
significantly better when given training variables that
are purposely crafted by physicists to discriminate be-
tween signal and background. Another classifier with
similar performance characteristics is the artificial neu-
ral network (NN) seen below.

Figure 6: Artificial neural network diagram.
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Artificial neural networks are biologically inspired clas-
sifiers which learn by adjusting the signal propagation
strength (weight) associated with each connecting path
(synapse) between nodes (neurons) and by adjusting bi-
ases at neurons in a way that minimizes the cost func-
tion C(ŷ(xi), y(xi)) of the output, where y is the desired
output for a given set of inputs and ŷ is the approxima-
tion to y computed by the model. Therefore, NNs are
trained by a gradient descent algorithm in the space of
weights which determine its behaviour. Single layer NNs
are non-linear and in fact can be used to compute any
function if allowed to be arbitrarily large [1]. In practice
however, the required size of the NN needed to model
complex data is unmanageably large.

The way that a neural network calculates an output is
by propagating the standardized input values forward
through the network. For a given neuron nk+1

j , the jth

neuron in layer k + 1 of the network, the output of the
neuron is the activation function f applied to the biased
weighted sum over all synapses connected from layer k
of the output of neurons nki .

ak+1
j = f

(
bk+1
j +

∑
i

wk
ija

k
i

)

The activation function is common to all neurons in
a network and is meant to standardize the outputs of
neurons, it is commonly a sigmoid or tanh function.

Figure 7: Activation function.

In the notation used above, the input values of Figure
7 would be a1i , i = 1− 5 and the output value would be
ŷ = a31.

Deep Learning

In order to skip the step of manually constructing dis-
criminatory input variables, one would desire a tech-
nique capable of automatically discovering useful non-
linear functions of raw input data. For example, if a
classifier was being made to recognize Higgs boson can-
didate events given the four momenta of all four final

state leptons in 4l final state data, then one could give
the 4l invariant mass m4l as a training variable and ob-
tain high efficiency selection by using a shallow classifier,
in this case the cuts m4l > 120 GeV and m4l < 130 GeV
would work well. However, if the only training variables
were the raw components of the four momenta then a
classifier would be needed that could discover the re-

lationship m4l =
√

(
∑4

i=1 pli) · (
∑4

i=1 pli) itself. This

task would necessarily require a deep classifier.

A classifier used for such abstract pattern recognition
tasks is the deep neural network. Deep neural networks
are multi-layered versions of the artificial neural network
introduced above. They contain many hidden layers, of-
ten with hundreds or thousands of hidden neurons per
layer in commercial applications or machine learning re-
search. The multi-layer structure endows the deep net-
work with the potential for many layers of non-linear in-
put signal processing and can result in high level feature
recognition of simple raw data. The process of train-
ing deep networks is more complicated than with their
shallow counterparts. This is a result of their lack of
transparency, the large number of parameters involved
in defining a deep neural network, the dependence of
performance on structural characteristics as well as hy-
per parameters like learning rate, and finally the vanish-
ing gradient problem. The vanishing gradient problem
is the tendency for the learning process to occur at dif-
ferent rates throughout the networks depth. Due to the
rich nature of training deep neural networks, the use of
deep neural networks has taken on its own name: deep
learning.

In order to train a neural network, of any size, it is nec-
essary to calculate the partial derivatives ∂C

∂wk
ij

as the

optimization of a neural network is a question of finding
the minimum cost in the space of possible configurations
of wk

ij . This is the rate of change of the cost function
- or how wrong the model is for a given event or batch
of events - with respect to the weight associated with
the synapse connecting the ith neuron in layer k to the
jth neuron in layer k + 1. For large neural networks, it
is not feasible to calculate these partial derivatives by
numerically varying each weight and propagating the
change forward through the network to calculate ∆C
as this would have to be done for each parameter of
the network. However, it is much less computationally
intensive to use an algorithm called back propagation
to calculate the required partial derivatives. This algo-
rithm is based on using the chain rule of calculus to use
the partial derivatives that have already been computed
in order to minimize the amount of new computation
that has to be done. By doing this, the algorithm prop-
agates from output to input once, calculating all the
partial derivatives along the way.
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II. METHODS & RESULTS

The goals of the study detailed within this report were
as follows:

1. determine the effects of each training variable on
BDT performance and optimize the BDT used to
separate VBF signal from ggF and qqZZ back-
ground with respect to training variables

2. explore the feasibility of using deep learning to
augment the performance of VBF selection

BDT Optimization

It is a kinematic characteristic of VBF events that there
are 2 quark initiated jets which have a large separation
in η (∆ηjj) and dijet invariant mass mjj . Therefore,
the problem of VBF selection lends itself well to using
the higher level physically relevant variables mjj and
∆ηjj for training a shallow classifier, namely a BDT.
The previous analysis of this problem concluded that
the core five variables {mjj , ∆ηjj , ηj1, p

T
j1, p

T
j2}, were

an effective set for training BDTs [2].

Figure 8: Distributions of mjj , ∆ηjj , ηj1, p
T
j1, p

T
j2 for

VBF (blue) and ggF+ZZ (red).

The performance of a classifier can be reliably deter-
mined by its receiver operating characteristic (ROC)
curve. This curve plots the efficiency with which a cut
on the output distribution of the classifier accepts sig-
nal and rejects background. An ideal classifier would
have a point like ROC curve localized at (1,1) corre-
sponding to perfect classification. Whereas a flat out-
put distribution which contains no discriminatory power
would yield the line BkgRej = 1 − SigAcc as an ROC
curve. Therefore, a single scalar value representing the
performance of a classifier can be chosen to be the in-
tegral of the ROC curve. The BDT trained on the core
five variables shown above is the standard performance

for this problem and corresponds to an ROC integral
of 0.785. The previous analysis also concluded that it
did not effect classification efficiency in any significant
way to train on purely ggF background [2]. Another
possible measure of performance is the statistical sig-
nificance S√

B
of a cut at BDTV BF = 0 when back-

ground and signal distributions are both normalized to
unity. Below is a summarized table of these perfor-
mance measures for BDTs trained on the variable set
indicated by ten binary digits corresponding to the set
{mjj , ∆ηjj , ηj1, p

T
j1, p

T
j2, p

T
4l, wj1, wj2, N

Trk
j1 , NTrk

j2 }
with a background indicated by either ggF, ZZ, or Both.

Table II: BDT training summary.

TrainingSet Background S√
B

@ BDT = 0 (N) ROC int

1100000000 ggH 1.34 0.781
1111100000 ggH 1.35 0.785
1101110000 ggH 1.38 0.794
1111111111 ggH 1.48 0.820
1100000000 ZZ 1.68 0.845
1111100000 ZZ 1.72 0.854
1101110000 ZZ 1.72 0.858
1111111111 ZZ 1.83 0.875

1100000000 Both 1.41 0.799
1111100000 Both 1.42 0.802
1101110000 Both 1.43 0.806
1111111111 Both 1.51 0.828

It is shown above that the first two variables, mjj and
∆ηjj , provide the majority of the separation power. Ad-
ditionally, it was found that in fact ηj1 contributed a
negligible amount when ∆ηjj was included in the train-
ing set. For all training sets, from the above table it
can be seen that it is easier to discriminate VBF from
ZZ background than from ggF events. An initially sur-
prising result is the fact that adding pT4l to the training
set provides a significant boost of classification power,
bringing the ROC integral from 0.785 to 0.794. This
result is surprising because the signal and background
distributions for pT4l on all of phase space have a small
separation in comparison to the other training variables
used. However it is worth considering the fact that while
all of the discriminatory variables in the training set de-
scribe the jet kinematics, pT4l is a characteristic of the
combined final state leptons and so while heavily corre-
lated with the jet behaviour, it might have new infor-
mation to contribute to the classifier. This can be seen
by plotting pT4l over just half of phase space using a cut
on ∆ηjj .
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Figure 9: pT4l distribution on all and half of phase space.

The effect on the ROC curve from adding pT4l to the set
of training variables is shown below below.

Figure 10: ROC comparison for the addition of pT4l to
the training set.

The BDT training summary in Table 2 contains train-
ing sets of all variables. That is, BDTs were trained
using jet widths wj[1,2] and number of tracks NTrk

j[1,2].

While these training variables yielded fantastic increases
in performance of the BDT, they are unreliable due to
differences between monte carlo and data. Jet widths
and number of tracks are not modelled well enough to
be training variables for a classifier. This is because the
classifier must be trained on monte carlo data; yet it is
used to classify real data, making it a difficult method
to justify and validate if the training data was not ac-
curate.

A series of applications of the trained classifiers to al-
ternate backgrounds was done in order to validate the
claim that BDTs trained on ggH background can clas-
sify ZZ events just as efficiently as BDTs trained on ggH
+ ZZ.

Table III: BDT applications.

TrainingSet Background Application S√
B

@ BDT = 0 (N)

1100000000 ggH ZZ 1.76
1111100000 ggH ZZ 1.74
1101110000 ggH ZZ 1.60
1101110000 ggH Both 1.43
1100000000 ZZ ggH 1.34
1111100000 ZZ ggH 1.32
1101110000 ZZ ggH 1.33
1101110000 ZZ Both 1.36

1100000000 Both ggH 1.35
1111100000 Both ggH 1.35
1101110000 Both ggH 1.39
1100000000 Both ZZ 1.73
1111100000 Both ZZ 1.75
1101110000 Both ZZ 1.67

Both the training set 1101110000 ggH and
1101110000 Both applied to VBF vs. ggH classifi-
cation seen in Table II and III give S√

B
= 1.43. This

was used as proof of the claim that the choice to train
on ggH or ggF + ZZ background is irrelevant for the
problem of VBF selection as stated in the previous note
[2]. A visualization of this can be seen below where a
BDT trained on ggH background is used to classify all
backgrounds.

Figure 11: BDT trained on ggH only applied to all back-
ground types.

The conclusion of this BDT study is that the training
set {mjj , ∆ηjj , p

T
j1, p

T
j2, p

T
4l} performs better than

the previous benchmark on this problem, and training
on ggH background only is a valid option. As a final
note, the BDT algorithms performance is not extremely
sensitive to the hyper parameters used to structure the
BDT. Therefore, these results are reproducible with a
tree depth of >4 and a forest size of >600 as long as
overtraining is carefully monitored.
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Deep Learning

The use of deep learning for problems in particle physics
has been shown to have promise recently [3]. Whether
it is useful for the specific task of VBF selection in the
H → ZZ∗ → 4l channel is what this work aims to study.

The prevalent package for multivariate analysis used by
experimental physicists is the Toolkit for Multivariate
Analysis (TMVA), which is an extension of ROOT, the
data analysis framework used in high energy physics.
This package contains an implementation of neural net-
works that allows deep networks to be built with any
depth or width, however it does not have the ability
to use some modern training algorithms like the so
called dropout algorithm which stochastically ignores
neurons while training in order to avoid overfitting. The
TMVA implementation of neural networks as well as the
pylearn2 implementation in python were both used in
an attempt to improve upon the BDTs’ performance for
this problem. A range of neural network architectures
was tested and it was found that for the problem of VBF
selection, deep neural networks could match the per-
formance of BDTs, but not significantly improve upon
it. The comparison was done with TMVA using 8 TeV
Monte Carlo data. Using both TMVA and pylearn2
frameworks for training neural nets, depths of 4-6 lay-
ers with widths in the range 5-100 were explored. The
pylearn2 neural networks were trained using theano,
a python library for gpu computing and a Tesla K40
graphics card however the speedup in training on a gpu
was only seen to be a factor of about 2 improvement
upon the use of a 6 core intel xeon cpu.

In general, deep neural network training is a problem of
finding a tuned set of hyper parameters and the right
architecture for a given problem. Since neural networks
are computationally intensive to train, it is likely that
the neural networks in this study were not optimal con-
figurations for the problem of VBF selection as a dense
grid search through the space of hyper parameters and
architectures was not feasible. The following are high-
lights of the neural network study. The models men-
tioned below were all trained on the set of variables
110111 unless otherwise stated.

Firstly, shallow neural networks were tested in order to
determine whether they could match the performance
of BDTs. Indeed, 1 and 2 hidden layer neural networks
were found to perform as well as BDTs, but not better.
The single layer neural networks had 100 and 30 hidden
neurons and were trained with a learning rate of 10−4,
and a batch size of 5 events. The 2 layer network had
15 hidden neurons in each layer and was trained with
the same hyper parameters as the single layer network.
The batch size is the number of events for which the cost
function is computed before adjusting the weights of the
network according to the average direction suggested by
all of the batch events. Both were trained over 1000
epochs, meaning the networks processed the full train-

ing dataset 1000 times. The ROC integrals for the test
data were 0.796 for the 2 layer network and 0.797 for the
single layer networks. Importantly, the maximum per-
formance of a deep neural network on this problem was
also found to be equivalent to that of the BDTs and the
shallow neural networks. A 5 hidden layer neural net-
work with 10 hidden neurons in each layer trained with
a learning rate of 10−4 and a batch size of 5 resulted
in an ROC integral of .796 as well. The width of the 5
hidden layer network was increased to 30 neurons per
layer and still the ROC integral was 0.797. These results
were verified by repeating the training with randomized
training and testing data to be constant to 2 parts in
1000, thus all methods result in the same performance
within statistical fluctuation due to finite data. The
ROC curves of all 4 of these neural networks and the
BDTs method are plotted together below.

Figure 12: ROC curves of classifiers trained on 110111

Using the python libraries pylearn2 and theano, neural
networks of depth 1 to 5 were trained with the stan-
dard training set 110111 mentioned above plus the low
level variables: jet masses, φj[1,2], η4l, ηj[1,2] and there
were no improvements in performance upon the TMVA
results. However, when this was done using TMVA,
a significant increase in ROC integral was seen. The
discrepancy between using pylearn2 and TMVA is not
understood, but it is certain that the TMVA networks
are not overtrained as the ROC curves produces when
using both training and testing samples overlap. This
result was thought to be a result of deep learnings abil-
ity to extract useful information from low level inputs,
however when shallow neural networks and BDTs were
given the low level variables mj[1,2], φj[1,2], η4l, ηj[1,2] as
well, there was an equal performance gain in all cases.
The final ROC integrals were all 0.815.
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Figure 13

III. DISCUSSION & CONCLUSIONS

The optimization of the boosted decision trees method
used on the problem of VBF signal and ggF background
separation in the H → ZZ∗ → 4l channel was studied,
and it was found that the best training variable set con-
sists of the dijet invariant mass (mjj), the dijet sepa-
ration in η (∆ηjj), both jet transverse momenta (pTji),

and the transverse momentum of the Higgs boson (pT4l).
Furthermore, it was found that ηj1 was not effective

when added to the training set and it was verified that
training on ggH background without the ZZ events was
a valid method. Later on, it was shown that adding the
low level variables mj[1,2], φj[1,2], η4l, ηj[1,2] yielded an
increase in ROC integral across all 3 methods BDTs,
shallow neural network, and deep neural network, from
0.796 to 0.815.

Shallow and deep neural networks were explored as a
potential substitute for BDTs if they performed bet-
ter, but it was found that both shallow and deep neural
networks of varying size had the same effectiveness as
BDTs when using the ROC curve as a metric for perfor-
mance. It seems that when many classifiers of different
type obtain the same result, then it is not the method
that limits the performance, it is the information avail-
able itself. Therefore, deep learning is not a useful tool
in augmenting classification performance in the problem
of selecting VBF events in the H → ZZ∗ → 4l channel.
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