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Abstract

This report examines the application of a multivariate analysis technique, known as
Boosted Regression Trees (BRT’s) to the reconstruction of the Higgs mass. BRT’s are being
evaluated as a competing method to the Missing Mass Calculator, which is currently being
used in the H → ττ channel. The effects of the regression target distribution, input variables
and training parameters on the regression performance are also investigated. BRT’s are a
promising technique and further studies will aim to better understand potential biases.

1 Introduction

Particle physics, the study of the most basic constituents of matter, has evolved over many years
in the process of trying to explain how the universe works on a fundamental level. These years of
study have lead to the development of the Standard Model (SM), which has been tested extensively
and has successfully predicted many new particles. Of these particles predicted by the SM, the
Higgs boson has been the most elusive. On July 4, 2012 a new Higgs-like boson was announced
and represents an impressive experimental accomplishment. After over fifty years, last summer’s
discovery - a 5.9 sigma excess at 126.0 ± 0.4(stat) ±0.4 (syst) GeV reported by the ATLAS
collaboration [1] and a 5.0 sigma excess at 125.3 ±0.4 (stat)±0.5(syst) GeV reported by the CMS
collaboration [2]- has shed light on the question, where does mass come from? To date, the Higgs
boson has only been observed decaying to bosons and thus, the tau decay channel has the potential
to be enlightening when it comes to examining the properties of this new particle.

One of the difficulties in this particular decay channel however, is that the tau is itself not stable
and will further decay into either leptons or hadrons with the addition of neutrinos, which leads to
difficulties in reconstructing the Higgs mass. For this reason, it will be useful to examine ways to
optimize the analysis for this particular channel. One possibility, which is being explored at Simon
Fraser University (SFU) in Burnaby, British Columbia is the use of boosted decision and regression
trees. Of interest in the following report will be the application of boosted regression trees to the
reconstruction of the Higgs mass as a competing method to the Missing Mass Calculator, which
is currently used.

1.1 ATLAS

CERN, the European Center for Nuclear Research, represents an amazing international collabora-
tive project and is home to the Large Hadron Collider (LHC). At 27 kilometers in circumference,
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the LHC is the world’s largest particle accelerator. Located 100 meters below Switzerland and
France, the LHC accelerates bunches of 1.1×1011 protons 50 nanoseconds apart with energies of
4 TeV per beam, which are then collided at one of four detectors: CMS, ATLAS, ALICE and
LHCb [3]. The focus for the rest of the report will be on the ATLAS detector and collaboration,
which SFU is a partner in.

The ATLAS detector is a multi-purpose detector, 46 m long and 25 m in diameter, weighing
more than 7000 tonnes [4]. The detector is composed of four basic measurement systems which
record energy deposits caused by particle emissions following a collision.1 The first component is
the inner detector (ID), which directly surrounds the beam line and consists of a pixel detector,
transition radiation tracker (TRT) and semiconductor tracker (SCT) all of which are surrounded
by a series of solenoid magnets. The ID has very high granularity and records the particle tracks
immediately following the collision. Due to the magnetic field, charged particles are forced in a
curved path, distinguishing them from neutral particles. The ID is then followed by the electro-
magnetic and hadronic calorimeters, which measure energy deposited when particles pass through
these regions. The last layer is the muon detector, which measures energy deposits from muons,
which pass undetected through the other levels of the detector.

Once the data has been captured, it is sent out to ATLAS collaboration centers across the
globe. There are over 3000 members in the ATLAS collaboration, spread over 38 countries and
174 institutions, including SFU [4]. It is at centers such as SFU, where analyses take place to
examine the data, and identify and reconstruct interesting physics events. One of the major efforts
at SFU is the Higgs → ττ decay channel.

1.2 Higgs → ττ

The Higgs → ττ decay channel is an interesting decay channel as it has the potential to be very
enlightening regarding the true nature of the new boson discovery. For masses below 140 GeV,
the SM Higgs has a significant branching ratio to tau pairs. If this channel produces no evidence
of the Higgs, then this new boson is potentially a new Higgs boson, but not the SM Higgs.

One of the difficulties in this particular decay channel is that the tau is itself not stable. At
1.78 GeV, the tau is the heaviest of the leptons, and will quickly decay into lighter particles, with
an average life time of 290.6 ±1.0×10−15 seconds [5]. The tau will either decay into a lepton with
two neutrinos (to conserve lepton flavour) or a hadron (usually a mixture of charged and neutral
pions) with one neutrino. Thus, the Higgs → ττ decay is split into lepton-lepton, lepton-hadron
and hadron-hadron categories based on how the two taus decay.

Unfortunately, there are some difficulties in reconstructing the Higgs from the decay products
due to neutrinos, which can only be identified by a missing momentum or energy in the transverse
plane. Since the momentum prior to the collision should be in the z direction, conservation of
momentum states that all the momenta in the transverse plane must add up to zero. Of course,
due to neutrinos, this is not true, and so the tau decay channel is complicated by the introduction
of missing transverse energy, �ET . Currently, the neutrino information is determined from the �ET
using a tool called the Missing Mass Calculator (MMC) [6].

1.3 Missing Mass Calculator

The Missing Mass Calculator (MMC) is a method developed around 2011 for better reconstructing
the Higgs mass, specifically in the ττ decay channel. Depending on the decay method of the two
taus, the MMC solves for 6-8 unknowns using the following four equations [6].

1The ATLAS detector uses a right-handed set of coordinates, whose origin lies in the center of the detector at
the nominal interaction point (IP). The beam line defines the z-axis, the x-axis points towards the center of the
LHC ring from the IP and y-axis points upwards. The transverse plane is defined using cylindrical coordinates (r,
φ), where φ is the azimuthal angle around the beam line. All ”transverse” variables are projected in the x-y plane.
Finally, we define the pseudorapidity as η = −ln(tan(θ)/2)
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Here, the subscripts 1, 2 refer to the two taus coming from the Higgs decay. The pvis,mvis, θvis
and φvis refer to the momentum, mass, polar and azimuthal angles of the visible tau decay products
respectively. The unknown variables are therefore all those with the mis subscript, and represent
the missing mass and momentum carried away by the neutrino(s). The θvm represents the polar
angle between the missing and visible momentum vectors. Therefore, the system of equations is
underdetermined. However, due to the underlying physics, some situations are more likely than
others. Other information such as the ∆R between the neutrino and visible mass is used to
determine the most likely solutions, and thereby reconstruct the mass of the Higgs, Mττ .

This technique is a great improvement on previous methods in terms of resolution and accuracy.
It has also been particularly successful in reconstructing an unbiased Z mass peak. Unfortunately,
the optimization process involves retuning for each new data set, which requires a lot of work
on the part of a small group of experts, familiar with the tau energy and MET resolution. On
an event-to-event basis, the computing time required to calculate the MMC can also dominate
the total analysis time depending on the particular situation. Therefore, it would be interesting
to explore other methods, which might be more straightforward and faster in both training and
calculation. This is where the Boosted Regression Trees have the potential to help.

1.4 Boosted Regression Trees

Figure 1: A graphical interpretation of a regression tree trained on two input variables X1 and
X2 [7].

Boosted Regression Trees (BRT’s) are a multivariate technique based on binary decisions.
They aim to estimate a target variable given a series of input variables X1, X2, .., Xn by applying
a set of cuts t1, t2, ..., tn. An algorithm is applied to determine the best cut that can be made on
one of those variables by minimizing the average squared error [8].

1

N

∑
N (y − ŷ)2 (1)

In Equation 1, y is the regression target of each event and ŷ is the mean over all of the events in
the node. This process of selecting cuts continues until some pre-defined end criterion is reached,

3



such as a maximum depth of the tree. In this way, at the end there will be a series of nodes
representing one possible estimate of the target. Simply put, what is being done is that the BRT’s
take a phase space dictated by the input variables and chop it up into regions each of which point
to a particular value of the target. Graphically, this process is shown in Figure 1. After all cuts
are completed, there will still be events whose average squared error is quite large. In order to
minimize the effect of these events, they are reweighted more strongly, and then a new regression
tree is trained. This process is what is referred to as boosting. Therefore, the regression trees
are also quite robust against statistical fluctuations. Furthermore, when the boosting is then
done, the final result is an average of the ”forest” of individual tree outputs. These methods are
implemented practically using the Toolkit for MultiVariate Analysis (TMVA) in ROOT.

1.5 TMVA

TMVA provides a simple interface for specifying training and testing parameters in BRT’s. Re-
gression analyses using TMVA are split into two sections of training and application [8].

The first component, training, is implemented using the TMVA Factory. This tool trains, tests
and evaluates the BRT’s. Before the training can begin however, the input variables, target and
input data set must be specified and given to the TMVA Factory. The factory then prepares
the data set by splitting it evenly between a training and a testing section. Then the optimized
cuts and weights are determined and stored in a binary file, called a weight file, which can later
be accessed for further analysis. The testing and evaluation steps, also implemented using the
factory, are used as checks of the training.

After training, the BRT’s can be applied to other data samples using the TMVA Reader. It is
necessary to give the reader the input variables in the same order as specified in the training in an
array form. Once these variable arrays are filled and reader takes the weight file produced during
training and evaluates the regression output, which can be read out for each event and compared
to expected values.

2 Analysis and Results

Though the primary goal of this analysis was to determine whether BRT’s could be used as an
effective replacement for the MMC, in the process, it has progressed further into an examination
of the method itself. The initial analysis is somewhat naive, using default training parameters
and existing data samples. Unfortunately, these data samples have no information about the
undecayed taus without the detector simulation effects, known as ”truth” information, and so
the input variables used initially were fully reconstructed and based on a signal/background type
analysis.

Variable Description
MET Missing transverse energy
dphi met lep Delta phi between the missing transverse energy and lepton
dr tau lep Delta R between the tau and the lepton
leadJetP t Momentum of the leading jet
mass transverse met lep Transverse mass from the lepton and missing transverse energy
mass transverse met tau Transverse mass from the missing transverse energy and tau
mass vis tau lep The visible mass from the tau and lepton
pt ratio tau lep Ratio of the tau momentum to the lepton momentum
pt vector sum all Vector sum of all momentum in the decay
sumPt Sum of the momenta
tau fourvect.fE Energy of the tau
lep fourvect.fE Energy of the lepton

Table 1: A list of all input variables used in the initial reconstructed data analysis
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2.1 Reconstructed Data Analysis

Using previously simulated data sets of H → ττ for Higgs masses ranging from 100 GeV to
150 GeV in 5 GeV increments, the target for the regression was chosen to be the true Higgs mass.
The input variables are as specified in Table 1. Furthermore, since this analysis was begun based
on an example regression analysis, the training parameters, as specified in Table 2, are somewhat
arbitrary.

Parameter Description Value
NTrees Number of trees used in boosting 100

nEventsMin Minimum number of events required in an end node 5
BoostType Boosting method AdaBoostR2

AdaBoostBeta Boosting parameter 0.2
SeparationType The quantity being minimized at each step RegressionVariance

nCuts Number of cuts being applied 20

Table 2: A list of default training parameters obtained from an example regression analysis in
TMVA [8] and used in the mass reconstruction analysis.

The analysis is based on a series of data samples with Higgs masses varying from 100 GeV
to 150 GeV in 5 GeV increments. To ensure independent training and testing events, the input
samples are divided in two parts prior to training. Following this, the BRT’s are trained on the
true Higgs mass target using the distribution shown in Figure 2a. The BRT’s are then applied
to the remaining events, the regression output is obtained and filled into a histogram. The mean
and RMS of the regression histogram is obtained and plotted as a function of the true mass of the
Higgs for each mass sample.

Ideally, in a plot of the regression output as a function of the true Higgs mass, the slope of
the best fit line should be close to 1. Unfortunately, this is not what is seen in Figure 2b. The
slope of the plot is in fact 0.226 ± 0.002 and biased very strongly towards 125 GeV- the center of
the target distribution. Since the target distribution was suspiciously discrete, in can be useful to
examine the effect changing the target distribution has on the slope of the plot.

Figure 2: (a) The initial distribution of the Higgs masses used for training. (b) The regression
output of the Boosted Regression Tree as a function of the true Higgs mass. Note that the error
bars, which represent the error on the mean of the regression output, are very small.

To this end, an artificial mass variable is used so that the distribution could be controlled very
accurately without changing any other inputs. The first step is to smear the target distribution,
and so for each mass sample, the Higgs mass was filled with a randomly generated Gaussian
distribution centered at the mass in question. Between 100 GeV and 150 GeV (non inclusive), the
Gaussians are given a standard deviation of 50 GeV whereas the endpoints are given a standard
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deviation of 100 GeV to extend the tails. When testing on this new distribution, the regression
performance improved slightly, giving a slope of 0.288 ± 0.006 as seen in Figure 3. However, this

Figure 3: (a) The artificial Higgs mass distribution using randomly generated Gaussians for each
mass. (b) The regression output of the Boosted Regression Tree as a function of the true Higgs
mass.

is not a very large improvement. The next test is therefore to increase the tails relative to the
center of the distribution since the mass points still seem to be biased quite strongly towards the
125 GeV point.

In order to do this, the Higgs mass is filled with a randomly generated uniform distribution,
once again centered at the mass of interest. For masses between 100 GeV and 150 GeV the
distribution has a width of 5 GeV but the end points, the tails are extended down to 0 GeV and
up to 250 GeV. This leads to a large improvement in the slope, up to 0.628 ± 0.006 as shown in
Figure 4. These results show that the tails of the distribution do indeed play an important role in

Figure 4: (a) The distribution of the artificial Higgs mass variable using randomly generated
uniform distributions. (b) The regression output of the Boosted Regression Tree as a function of
the true Higgs mass.

the regression performance. Intuition would suggest that when events filter through the regression
tree, they are pulled towards the side of the distribution with more events. Therefore, at the tail
ends of the training distribution, the regression output would be high for the low masses and low
for high masses. By smearing the distribution, this effect is mitigated.

The training parameters of the BRT’s may also affect the method’s performance. In order to
test these effects, all the parameters in Table 2 are used as a default while varying only one at a
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time. The results are summarized in Table 3. There seems to be little improvement from changing

Parameter Value Slope
NTrees (more trees) = 1000 → 0.6527

nEventsMin (more events per node) = 50 → 0.71
MaxDepth(deeper trees) = 200 → 0.5943

AdaBoostBeta (larger boosting parameter) = 0.5 → 0.6295
AdaBoostBeta (smaller boosting parameter) = 0.05 → 0.5917

Table 3: A table outlining the various changes to input parameters when testing regression per-
formance.

the training parameters other than when increasing the minimum number of events per node. It
should be noted as well that though increasing the number of trees used in boosting does improve
the slope somewhat, the training time also increases considerably, so there is some trade off.

The variable nEventsMin, specifying the minimum number of events per node is interesting
because it has a strong influence on overtraining. Overtraining can occur when BRT’s are trained
on statistical fluctuations particular to the training sample, which can lead to other samples
being estimated incorrectly. This is usually clearest when looking at the deviation between the
regression output and the truth value for the training and testing. If there is overtraining, the
testing deviation should be much larger than the training. This indeed is present for a minimum
value of 5, but it disappears for larger values as shown in Table 4. It is interesting to note that

nEventsMin Training RMS (GeV) Testing RMS (GeV) Slope
150 30.12 34.3 0.6520
200 31.03 33.52 0.6382
250 31.61 33.78 0.5711
300 31.33 33.85 0.5548
350 31.61 33.67 0.4973

Table 4: The RMS values of the training and testing distributions as the minimum number of
events in each end node is varied.With a large number of events required in each end node,
overtraining was avoided.

the slope of the regression as a function of the true Higgs mass decreases with increasing value of
the nEventsMin variable. Therefore, a balance must be struck between having a good slope and
preventing overtraining. For this reason, all future tests are conducted using a minimum of 200
events.

2.2 Truth Level Data Analysis

At this point, new data samples containing truth-level variables were generated using PowHeg
[9, 10, 11] and Herwig [12] to determine whether it was possible to better understand the results
seen from the reconstructed variables. According to physical reasoning, it is simple to reconstruct
the mass of the Higgs boson from the four vectors of its decay products, in this case two taus.
Therefore, the energy and three momenta of each of the taus at truth level are used as input
variables in the further analysis. The target is also changed to be the true Higgs mass once again
rather than the artificial mass variable used previously. Due to the very narrow peaks for each
Higgs mass however, the distribution of the target is in fact nearly discrete. The result is a slope
of 0.909 ± 0.0003 as shown in Figure 5. This suggests that the BRT’s effectively approximate the
true Higgs mass using the truth level tau four vectors.
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Figure 5: The regression output of the Boosted Regression Tree as a function of the true Higgs
mass using the tau four vectors as the input variables.

3 Discussion

These last results raise some interesting questions however concerning whether the truth level tau
variables are special in some way or whether the regression would work as well for reconstructed
variables or other truth level variables. Some interesting next steps to further explore this would
be firstly to look at other truth-level variables. For example, using the decay products of the
taus, i.e. the leptons and hadrons, as the input variables. Very likely, this would create additional
complications due to the introduction of the neutrinos. The tau four vectors already take into
account the missing energy carried away by the neutrinos, but when using only the visible tau
decay products at truth level, the neutrino contribution would be unknown. On the other end
of the spectrum, it would also be interesting to see what the regression output would look like if
the input variables were simply the Higgs four vector. Past attempts with other variables seem
to indicate that BRT’s do not perform very well with a very small number of variables, so it
would seem unlikely. During training, with very few variables, the average squared error cannot
be minimized properly. However, it is not yet quite clear why this is.

Another option that could produce interesting results would be to smear the truth level vari-
ables in such a way so that they mimic the resolution of the reconstructed variables. In this way,
it would be possible to determine what effect the resolution of the input variables has on the
regression output. This test could potentially answer the question as to whether the truth-level
tau vectors are special in some way in regards to the BRT’s.

4 Conclusions

This analysis has explored many aspects of Boosted Regression Trees in the application of recon-
structing the Higgs boson mass. BRT’s are a promising technique and offer a resolution comparable
to the current MMC, but further studies are still required to understand the potential biases. It is
clear that the regression output is quite strongly affected by the distribution of the target variable,
especially the inclusion of tails. Varying the training parameters on the other hand makes very
little difference with the exception of the minimum number of events per node. This variable
not only strongly affects the accuracy of the regression but also prevents overtraining when large
enough and so there is a trade off between the overtraining and accuracy that needs to be dealt
with. Finally, the results also indicate that the input variables have a large effect on the regression
performance. However, exactly how or why certain variables work better than others is not yet
quite clear, and must be explored further.
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