
CERN Summer Student Project:
Standard Method Dijet Balance

Author: Martin Friedl

Supervisor: Dr. Thomas Koffas

Carleton University - ATLAS Group

Sept 4th, 2012



Abstract

The forward jet response in the ATLAS detector requires an in situ correction to capture the effects that
are not captured by the initial Monte Carlo (MC) derived calibration. Given that the detector’s response to
central jets is well modeled by Monte Carlo, an in situ analysis using dijet events is performed which probes
the response in the forward regions of the detector by exploiting transverse momentum balance between a
central and forward jet. From this analysis, response curves are generated giving the response of forward jets
(|η| > 0.8) relative to central jets (|η| < 0.8) for both data and MC. An attempt is then made to implement pileup
reweighting of MC data in order to normalize the MC pileup conditions to those observed in experimental data.
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1 Introduction
In the ATLAS detector, two proton beams traveling in opposite directions interact with one another. In each beam, the
protons travel in bunches with a separation of 50ns. When two bunches of protons collide (called a bunch crossing), often
the constituents of the two protons (partons) will hit each other with enough energy that they hadronize, causing a parton
shower. A parton shower is simply a collection of partons that get ejected from the beam axis. Once ejected, this cluster of
partons will hadronize, forming a collection of more stable particles which are called a jet. This jet is then detected by the
ATLAS calorimeters as a deposit of energy. Fig. (1.1) illustrates a two proton beam interaction resulting in two jets. This
type of interaction is also called a dijet interaction.

Figure 1.1: Diagram of a proton bunch crossing resulting in a dijet. [4]

1.1 The ATLAS Coordinate System
ATLAS uses a standard, right-handed, coordinate system to define the position and direction of travel of a particle within
the detector. In this coordinate system, the z-axis points along the direction of the beam line, the x-axis points towards the
centre of the accelerator and the y-axis points upwards. The polar angle θ is then measured from the positive z-axis to the
jet vector. Depending on how the initial protons interact, jets are produced that travel in various directions. In order to
measure which direction a jet is travelling with respect to the beam axis, an angular dependent term called pseudorapidity
η is defined. Pseudorapidity is related to the polar angle θ by Eq. (1.1).

η=-log(tan(θ/2)) (1.1)

In Fig.(1.2), a diagram shows the relationship between angle θ and pseudorapidity η.

Proton Beam Proton Beam 

Beam Axis 

Figure 1.2: Diagram of pseudorapidity η measurement. [5]

1.2 Central and Forward Jet Definition
If a particle is ejected almost perpendicular to the beam axis (η ≈ 0), it will land in the central part of the detector and
is therefore called a central jet. On the other hand, a jet that travels very far along the beam axis before being absorbed
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(|η| >> 0) will land in the forward part of the detector and is for this reason called a forward jet. As seen in the diagram
in Fig.(1.2), a forward jet will have a large |η|, whereas a central jet will have an |η| close to zero. In this analysis, central
jets are defined as having |η| < 0.8, corresponding to the central region of the barrel calorimeter in ATLAS. Any jets with
|η| > 0.8 are considered to be forward jets [1]. The central jets are then used as a reference in order to probe the rest of the
detector. The details of this method are further discussed in Section 2 of this report.

The calorimeters in the forward region of the ATLAS detector do not properly reconstruct the exact transverse momen-
tum pT of forward jets due to factors such as: differing detector technologies, dead mass, and the small angle at which jets
enter the forward regions of the detector. On the other hand, the central region of the barrel calorimeter in ATLAS has been
well defined and modeled such that detected particles in the central region are measured to have a direction and energy that
is very close to Monte Carlo (MC) simulation. In fact, the uncertainty on the measured energy for central jets has been
determined to be about 1-3% [3].

1.3 Experimental Data
The purpose of this project is to study the detector jet response for forward jets relative to central jets. The jet response is
studied using jets reconstructed from experimental data and also using jets reconstructed from MC simulation. The results
from data and MC are then compared for consistency.

In the case of experimental events, when an interaction occurs, the particles ejected from the event are absorbed by
the liquid argon calorimeters inside the ATLAS detector. The calorimeters register a deposit of energy which is sent as an
electrical signal to the level 1 triggers which are calorimeter-based hardware triggers. ATLAS has many levels of hardware
and software triggers to reduce the stored data rate to a manageable amount. An Anti-Kt jet-finding algorithm [6] is then
run on all the events that pass the level 1 trigger in order reconstruct the jets. To further reduce the amount of data collected
so that it can be processed in a reasonable amount of time, the jet objects are sent to higher-level, software-based, triggers
called event filter triggers. After having gone through all the different trigger levels, the data rate is reduced to a manageable
amount which can then be stored and analyzed.

For this analysis, high level software-based event filter triggers were used. The jet triggers are divided into two cat-
egories, forward and central, corresponding to |η| > 2.8 and |η| < 2.8 respectively. Forward and central triggers are
further divided and categorized by the jet pT threshold required to fire the trigger. Thus, each event is categorized as being
triggered by either a forward or central jet corresponding to a particular jet pT .

1.4 Generating Monte Carlo Data
MC data is generated based on theoretical models that give each outcome of a collision a probability. After the collisions
are generated, they are put through a simulated model of the ATLAS detector which turns these generated collisions into
signals. These signals are also then fed into an Anti-Kt jet-finding algorithm in order to reconstruct the jets, much like with
experimental data.

2 Standard Method Di-Jet Analysis
In an interaction, the initial protons have negligible transverse momentum pT since they are traveling along the beam axis.
However, after the interaction, jets are produced that have a nonzero transverse momentum. By conservation of momentum
the total vector sum of the jets’ pT is zero. Thus, when the measured pT of two jets from a dijet interaction are compared,
it is expected that they are equal. If events are chosen in which at least one jet falls in the central region, by looking at the
pT balance between the two jets, various regions of the detector can be probed in order to get the detector jet response in
all other regions of the detector.

For standard method dijet analysis, standard dijet event selections are first applied to the data in order to ensure that
all remaining events have interactions with the previously mentioned two parton to two jet topology, with one jet falling
in the central region of the detector. The two jets are referred to as either the reference jet or the probe jet. The reference
jet falls within the central region of the detector where the detector response is well modelled and therefore the reference
jet is considered to have its pT reconstructed very accurately. However, this is not always the case for jets at higher
pseudorapidity ranges. After the reference jet has been defined, the probe jet is allowed to fall anywhere inside the detector.

Events are binned together by their pT and their pseudorapidity η (eta). The events are binned in pT because the
response of the detector can change with varying pT . Therefore, in order to get a detailed response profile, the events are
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broken up into separate pT bins. The pT bins are defined by the previously mentioned ATLAS jet triggers, with the lower
edge of each pT bin corresponding to the >99% efficiency point for a given trigger. In addition, each pT bin is further
sub-divided into η bins in order to observe the response change over the whole detector. The η binning is defined by the
physical detector transition regions to determine how the response changes across the transition regions in the detector.

2.1 Asymmetry Distributions
For each pT and η bin, an asymmetry value (A) is calculated according to Eq. (2.1).

A =
pprobeT − prefT

pavgT

(2.1)

A is a measure of the difference in pT between the two jets, normalized to the pavgT of the two jets. Ideally, it is expected
that both pT s would be equal which would makeA zero. Though, due to several of the previously mentioned inefficiencies,
A is often slightly more or less than zero. The A values of all the events in a given pT and η bin are added together to
give an asymmetry distribution as seen in Fig. (2.1) . From this distribution, the mean asymmetry for that individual bin is
calculated.
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Figure 2.1: Asymmetry distributions for Monte Carlo and experimental data.

2.2 Data Scaling
In the case of experimental data, in order to get the proper asymmetry distribution, the events captured by the forward
pT trigger are added to the events captured by the central pT trigger. However, because of a difference in luminosity
(number of particles per unit area per unit time) collected by each, the two distributions cannot be added directly. Instead,
a luminosity scaling factor must first be applied to each of the two trigger distributions in order to compensate for the two
different trigger luminosities.

In Fig. (2.2) it can be seen how initially the central and forward trigger asymmetry distributions are comparable. After
the luminosity scaling factor is applied, the forward trigger becomes much less significant compared to the central trigger.
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Figure 2.2: Unscaled and scaled asymmetry distributions for experimental data.

2.3 MC Scaling
For MC, the total data set is constructed from 8 data subsets called JX samples that vary from J0 up to J7. Each sample is
generated from a Poisson distribution centered at a certain pT which increases as you go up in number of the JX sample.
Initially, all JX samples have the same number of events, but because high pT events are less likely to occur than low pT
events (smaller cross section), the higher JX samples must be scaled by a smaller weight than the low JX samples. These
applied weights are called the cross-section weights. In addition, each event is also weighed with a filter efficiency weight,
a luminosity weight and an event weight. The overall scaling factor applied to each MC event is shown in Eq. (2.2). For
each pT and η bin, all of the JX data subsets must first be scaled by their corresponding W and added together make up
the asymmetry distribution for that bin.

W =
WFilterEffWCrossSectionWLumi

WEvent
(2.2)

In MC, as seen in Fig. (2.3), the J1 sample is made much more statistically significant by the W scaling. Since the J1
sample has a larger cross-section than the J2 sample it is scaled by a larger number than the J2 sample. Therefore, after
scaling, the J1 sample is more statistically significant than the J2 sample. After scaling all of the JX samples by their W ,
they may be added together to create the overall asymmetry distribution for each pT and η bin. Note that the rest of the JX
samples (J0, J3-J7) were not included in Fig. (2.3) because they do not contribute any events to this particular bin.
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Figure 2.3: Unscaled and scaled JX asymmetry distributions for Monte Carlo data.
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2.4 Generating the Response Curves
Once the asymmetry distributions for all η bins within a certain pT bin were generated, the mean asymmetry was calculated
for each distribution. From the mean asymmetry, the jet response R was then calculated using Eq. (2.3) for each pT and η
bin. By construction, this method defines the R in the central region to be 1, so if the probe jet lands in the central region
of the detector, R will be 1. If the probe jet lands outside of the central region, R will deviate from the expected value of 1
due to the different pT response for forward jets.

R =
pprobeT

prefT

=
2 +A

2−A
(2.3)

The R values from each η bin within a pT range were plotted in order to give a response curve over all η for a given
pT range. This was repeated for all pT ranges, resulting in multiple response curves, each for a given pT . An illustration
of this process can be seen in Fig. (2.4). In this illustration, it can be seen how the Aavg is taken from each A distribution,
then Ravg is calculated and finally plotted on the response curve as a function of η bins.

𝐴 𝑀𝐶 = −0.08939 𝐴 𝐸𝑋𝑃 = 0.006332 

𝑅 =  
2 + 𝐴 

2 − 𝐴 
 

𝑅 𝐸𝑋𝑃 = 1.006352 
𝑅 𝑀𝐶 =0.914434 

Figure 2.4: Illustration showing how the response curves were created.

2.5 Results
The response curves were calculated for each pT bin with MC data and experimental data both plotted on the same graph
for comparison. An additional graph was added below the response curves showing the ratio ofRMC/RData vs. η in order
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to better display the discrepancy between MC data and experimental data. The response curves for a few pT bins can be
seen in Fig. (2.5).
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Figure 2.5: Monte Carlo and experimental data response curves for various pT ranges.

In Fig. (2.5) it can be seen how the response curve η range decreases as pT is increased. This is by explained by the
fact that jets only have a finite total momentum. At very high pT , most of the jet’s momentum will be in the transverse
direction and only a small fraction of the total momentum will then be in the forward direction. This kinematic limit makes
it impossible for high pT jets to land in the very forward regions of the detector since these jets will be ejected nearly
perpendicular to the beam axis and therefore land closer to the central region of the detector.

3 Pileup Re-Weighting
In order to improve the accuracy of the response curves, the MC data must be also re-weighted to the pileup conditions at
which the data was taken. Pileup is a term used to describe the process where a large number of simultaneously occurring
interactions cause a “pileup” of signals in the detector. There are two types of pileup: in-time pileup and out-of-time
pileup. In-time pileup is caused by multiple interactions in the same bunch crossing. Out-of-time pileup is caused by
multiple events overlapping from consecutive bunch crossings and arises due to the long integration time (∼ 400ns ) of
the calorimeters. In 2012, due to the smaller times in between proton bunch crossings (currently 50ns), there is a larger
amount of out-of-time pileup. This means that the detector sometimes does not have enough time to “reset” itself before
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the next bunch crossing and therefore registers a signal from the previous bunch crossing.
In order to characterize pileup, the average number of proton interactions (collisions) per bunch crossing µ are recorded

while data is being collected in ATLAS. Since pileup is directly related to the number of interactions per bunch crossing, a
µ distribution is a good estimator of the pileup conditions in a given data set [2].

The pileup conditions in MC data and collected data are not initially the same because MC data is generated with a
default set of pileup conditions. Experimental data, on the other hand, is captured in the ATLAS detector where the average
number of interactions per bunch crossing µ is constantly measured and recorded. Both the data and MC µ distributions
can be seen in Fig. (3.1).
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Figure 3.1: Total µ distributions for experimental data and Monte Carlo data before pileup reweighting.

From Fig. (3.1) it can be seen that the unweighted µ distribution for MC is not of the same order as the distribution for
experimental data. Therefore, in order to compare the two, a normalizing factor is applied to both which normalizes the
integral of each distribution to 1. Both distributions can then be plotted on the same axes in order to compare their shapes.
In Fig. (3.2) this comparison is shown and it can be seen that the experimental µ and the MC µ do not agree. This proves
that the MC data must be re-weighted in order for it to match the pileup conditions of the collected data.
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Figure 3.2: Total normalized µ distributions for experimental data and Monte Carlo data before pileup reweighting.
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A tool has been developed called the Pileup Reweighting Tool which reads in luminosity data files that contain < µ >
for a specific time block in the data collection run. This tool generates weights for each MC event in order to normalize
the MC µ distribution to the experimental µ distribution.

The reason for applying these weights is that, for example, if the experimental data set only has events with µ < 30,
comparing this data to an MC data set that has events with µ > 30 would result in inconsistencies. The inconsistencies
would arise due to the fact that the two data sets were produced under different pileup conditions. Instead, using the
Pileup Reweighting Tool, weights are generated and applied to the MC data which has the effect of normalizing the MC
µ distribution to match that of data. In the end, the µ distribution of the MC data is brought down by the weights to
correspond exactly with the µ distribution of the collected data set, as shown in (3.3).

Mu Distributions for MC and 
Experimental Data Before Pileup 

Reweighting 

Effect of Pileup Weights 
on MC Mu Distribution 

Theoretical Mu distributions for 
MC and Experimental Data After 

Pileup Reweighting 

Figure 3.3: Flow chart showing the expected effect of introducing pileup weights to Monte Carlo data µ distributions.

In Fig. (3.3) the expected effect that pileup reweighting should have on the MC distribution is shown. After pileup
reweighting, it is expected that the MC µ distribution gets reweighted to perfectly fit the data µ distribution. By confirming
that the two µ distributions coincide, we can be certain that the pileup weights were applied properly and that the MC data
is now normalized to the same pileup conditions as the experimental data.
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3.1 Pileup Reweighting Results
The results of the pileup reweighting being applied to the MC data can be seen in Fig. (3.4). It is clear from the plot that
the pileup reweighting did not properly reweigh the MC µ distribution. It was expected that the MC µ distribution would
be scaled perfectly in order to coincide with the experimental data µ distribution, but this was not the case. Instead, in
Fig. (3.4), it appears as if there is a shift by one bin to the right in the reweighted MC data sample, though only on the
left side of the distribution. On the right side of this same distribution, near µ = 30, there no longer appears to be any
shift. A possible explanation for this discrepancy could be that the luminosity files that were given to generate the weights
were inconsistent with the actual data that was used for the comparison. Therefore, the weights were generated using an
assumed data set, but when these weights were applied to the actual data (which was different from the assumed data set)
it caused the discrepancy between MC and data seen in Fig. (3.4).
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Figure 3.4: µ distribution of the actual result of introducing pileup weights to the Monte Carlo µ distributions.

4 Conclusion
The standard dijet analysis method was used in order to probe the jet response of the forward regions of the ATLAS
detector. The pT of forward and central jets were compared in order generate response curves as a function of η for various
pT . It was seen that the detector response falls off as |η| increases but is generally in agreement to within 10% with MC
data. However, it is important to note that the standard method dijet pT balance has the disadvantage that it requires at least
one of the two jets to fall in the central region of the detector, resulting in limited statistics. Dijet events where both jets fall
outside the reference region are not used in the analysis. As an improvement, there exists a matrix dijet balance method
which does not have this restriction. In this method, the reference and probe jets are instead simply replaced with left and
right jets. A minimizing matrix of linear equations is then constructed in order to solve for a calibration factor, from which
the response curves are obtained [1]. This method is now used as the default dijet intercalibration method because it is able
to produce more accurate response graphs with smaller error bars due to larger statistics.

After generating the response curves, an attempt was made in order to correct for the difference in pileup conditions
between MC generated data and experimental data. The Pileup Reweighting Tool was implemented to generate pileup
weights which were then applied to the events from MC data. The resulting weighted µ distribution was compared to that
from experimental data to check that the reweighting was successful. It was found that discrepancies still existed between
the MC data and the experimental data. This suggests that perhaps the data set given to the Pileup Reweighting Tool was
not consistent with the data set used to compare with MC after pileup reweighting. The cause of the improper weighting has
to be determined and corrected before response curves can be produced using the pileup weights. Once a solution is found,
new response curves can be produced and compared with the response curves generated before the pileup reweighting in
order determine the effect of the pileup correction on the measured response of the detector.
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