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Abstract

A theory of dark matter has been proposed that predicts that highly collimated groups
of leptons, “lepton jets”, will be seen at the LHC. The theory describes a dark gauge sector
consisting of dark matter particles and dark gauge bosons. A Monte Carlo simulation was
written to simulate dark gauge boson decays into leptons. These decays were studied in
detail and it was determined that any event seen by the ATLAS detector will be very highly
collimated. In the case where there are multiple pairs of leptons, these pairs are also highly
collimated and, for the values used in the simulation, form a single jet. In the solenoidal
magnetic field of ATLAS the leptons can curve closer together or further apart. The separation
distribution is composed of both cases in equal quantity and is therefore largely unaffected by
the magnetic field. The separations observed are, in general, sufficiently far apart that ATLAS
can distinguish leptons within a given jet simply from geometry. It was also found that from
the detected leptons it is straightforward to reconstruct the dark gauge boson masses in both
the single pair and multiple pair cases.
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1 Introduction

Soon the LHC will be operating and providing us with the means to push the energy frontier to
levels previously unacheived by any machine. As the LHC has been many years in the making,
theorists have had an abundance of time to create theories of what new physics may be seen at
these energy scales. While many theories have enough free parameters that they can be fit to
what is found at the LHC, the collider will nonetheless provide the necessary data to reject a
number of theories and steer others in the appropriate direction. It is at the LHC that theory
and experiment will get a chance to advance together, giving insight into the nature of our world.

Among these recently developed theories include some that go as far as to characterize dark
matter in terms of gauge symmetries and make predictions about how it will manifest itself at the
LHC. One of these theories predicts that highly collimated groups of leptons, or “lepton jets”, will
be seen at the LHC. This paper presents a Monte Carlo simulation that was written to investigate
the kinematics of these lepton jets in the ATLAS detector.

2 Theory

In recent years there have been a number of anamolous results from several different astrophysics
experiments. In particular: PAMELA (A Payload for Antimatter Matter Exploration and Light-
nuclei Astrophysics) has found an excess in the positron fraction (e+/(e+ + e−)) in the energy
range of 10−100 GeV; ATIC (Advanced Thin Ionization Calorimeter) cannot distinguish between
electrons and positrons but has found an excess of e+ + e− in the energy range of 300− 800 GeV;
WMAP (Wilkinson Microwave Anisotropy Probe) has found there are high-energy emissions from
galatic centers which are unaccounted for; and EGRET (Energetic Gamma-Ray Experiment Tele-
scope) has found a gamma ray excess in the energy range of 10− 50 GeV.

While it is true that each result can be explained via a different phenomenon, Arkani-Hamed
et al. have proposed a theory that explains all of the results in a very unified fashion [1]. The
theory introduces a new dark gauge sector which accounts for the the presence of dark matter in
the universe and the astrophysics results cited above. In this framework, the dark matter itself
consists of heavy dark matter particles on the order of 500 − 800 GeV, and light dark gauge
bosons on the order of ≈ 1 GeV. The high mass of the dark matter particles is in accord with the
calculated presence of dark matter in the universe. The low mass of the gauge bosons provides
two key aspects for the theory. The first is that decays to protons are supressed purely from
kinematics, thus favouring leptonic decays to electrons1, and muons. The second is that the
leptonic cross section is increased via the Sommerfeld enhancement. This allows the cross section
to be high enough at present to fit the astrophysical data and low enough in the early universe
to fit the cosmological data.

The light gauge bosons of the dark sector are predicted to decay via Standard Model particles,
and the only kinematically accessible ones are electrons and muons. Since these gauge bosons
have a very low mass and are produced in decays of massive dark particles, their lepton products
will be boosted and highly collimated. Arkani-Hamed and Weiner give these groups of leptons
the name “lepton jets” [2].

While in this theory supersymmetry is not necessary, several theorists argue that it is well
1In this paper, electrons and positrons are referred to collectively as electrons.
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motivated [3]. In a SUSY version of the dark matter theory the LHC enters the picture because
of its high energy. If the LHC reaches a high enough energy to create SUSY particles, then
these particles may decay to SUSY particles of the dark sector which in turn will decay in the
dark gauge bosons and then into lepton jets. According to Baumgart et al. there is another way
these dark gauge bosons can be produced that does not require SUSY, namely direct production.2

This arises due to a small kinetic mixing between the dark force carrier and the Standard Model
photon. Consequently Standard Model electromagnetic fields also contain a small dark charge
which would produce these dark gauge bosons. In this case it is the high luminosity of the LHC
that provides the discovery potential.

Figure 1: A two lepton decay of the dark gauge boson.

This paper focuses on direct production and studies, in particular, two decay chains predicted
by Baumgart et al. Following the notation presented in [3], γ′ represents a dark gauge boson, and
w′ represents another dark gauge boson which couples to the γ′. The first decay, a two lepton
decay can be seen in Figure 1. The second is a four lepton decay, as seen in Figure 2, and only
arises since the dark matter theory they present is non-abelian. As such they also present decay
chains including six and eight leptons, but these were not studied in this paper.

Figure 2: A four-lepton decay of the dark gauge boson.

The kinematics of these decays can be studied by simply specifying the appropriate four-vector
distributions; it is not necessary to simulate the production mechanism.

3 Simulation

While there exist several software packages for the simulation of physics processes3, the software
for the simulation was written in its entirety using only C++ libraries. This served several
purposes: while it was primarily a pedagogical exercise, it also provided a fast way to generate
events. The software package used to analyze the simulated data was ROOT[7].

2This is very similar to prompt photon production in the Standard Model [3].
3Such as ATHENA, PYTHIA, ALPGEN, etc.
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3.1 Monte Carlo Methods

In order to simulate the physics processes involved in a theory of dark matter it was necessary to
create a framework capable of producing random variables according to specified distributions.
Two general distributions that were frequently used were a uniform random distribution and a
Gaussian random distribution. The uniform random distribution was generated by using the C++
rand() function and scaling and shifting it as necessary. The Gaussian random distribution was
generated using the Box-Muller Transform4. The essence of the method is to choose two random
numbers x1 and x2, uniform from 0 to 1, and transform them as:

x′1 =
√
−2 lnx1 cos 2πx2 (1)

x′2 =
√
−2 lnx1 sin 2πx2 (2)

into two Gaussian random numbers x′1 and x′2. In the simulation, the polar form of the Box Muller
transform was used since it is faster in general. The polar form takes two random numbers x1

and x2, uniform from −1 to 1, and computes r2 = x2
1 + x2

2. If r2 > 1 then x1 and x2 are redrawn
until they satisfy r2 ≤ 1. Then x1 and x2 as:

x′1 =

√
−2 ln r2

r2
x1 (3)

x′2 =

√
−2 ln r2

r2
x2. (4)

In addition to these commonly used distributions it was necessary to produce distributions
according to a generic function f(x). This was done according to the Inverse Transform Sampling
method5. The method requires f(x) to be integrable and for the integral to be invertible. In cases
where the integral was not analytically invertible, it was inverted numerically.

3.2 Event Generation

Using the theory of dark matter, Baumgart et al. presented several concrete models of dark gauge
boson decays to Standard Model particles [3]. In particular they provide a plot of the differential
cross section of the γ′ versus its transverse momentum. The distribution of transverse momentum,
pT , was approximated as,

f(pT ) =
λ2

2
exp(−λ

√
pT ), (5)

where λ = 1.08 GeV−1/2 was measured from the plot in [3]. The resulting plot is shown in Figure 3.
Then four-vectors were generated for the γ′ using f(pT ) as the transverse momentum distribution.
The other required parameters, the azimuthal angle φ and the pseudorapidity η, were produced
according to typical particle production at hadron colliders. As such, φ was uniform between 0
and 2π and η was uniform between −2.5 and 2.5.6 These four-vectors were then decayed according

4The details and proof of this method are beyond the scope of this paper but can be found at
http://en.wikipedia.org/wiki/Box-Muller transform.

5The details of this method are beyond the scope of this paper but can be found at
http://en.wikipedia.org/wiki/Inverse transform sampling.

6The η limits are the bounds of the ATLAS Inner Detector.
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Particle Monte Carlo Code Mass (GeV)
γ′ 601 1.5
w′ 602 0.6
e± ±11 0.000510998910
µ± ±13 0.105658367

Table 1: Masses used in the simulation taken from Baumgart et al. [6]

to the decays presented in Figures 1 and 2. The mass values used can be found in Table 1. These
are the same values used in the Monte Carlo used by Baumgart et al. The two-lepton decay
produces either an electron and a positron or two muons, while the four lepton decay produces
two electrons and two positrons or four muons from a pair of w′s. These decays were produced
spherically uniform7 in the rest frame of the γ′ and then the lepton four-vectors were boosted back
into the lab frame. The four-vectors of the boosted leptons were used to derive various kinematic
variables which were analyzed in detail.

Figure 3: The γ’ cross section produced from Equation 5.

3.3 Trigger Requirement

Inside the LHC there will be bunch crossings every 25 ns. This will produce more collisions than
seen before in any other experiment to date. Each collision will take about 1.5 Mb of disk space so
storing this amount of data is unfeasible. As it turns out many of the collisions are “uninteresting”
background processes and will not need to be stored. In order to make fast decisions on which
events to store, ATLAS employs a trigger system to discriminate between events. This means
that not all events will be recorded, depending on whether or not they meet the requirements as
decided by the ATLAS Trigger Menu.

To gain a basic understanding of the effect this would have on the potential to detect and
record the lepton jet events, a loose trigger requirement was applied to the simulated data. The

7While a spherically uniform decays assumes a scalar gauge boson, other distributions were also simulated with
cos2(θ) and sin2(θ) dependences for a vector gauge boson. While the shape of some distributions were slightly
modified, the kinematics remained unchanged.
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lepton products of the generated γ′ were required to include one electron with pT > 12 GeV8, or
one muon with pT > 10 GeV, or two electrons with pT > 5 GeV, or two muons with pT > 4 GeV.

In addition to the trigger requirement, an inner detector requirement was also applied. This
requirement was used to simulate the limits of the particles that the ATLAS detector can detect.
The inner detector requirement required all leptons in the event have pT > 1 GeV and η < |2.5|.

Figure 4: The γ’ cross section produced from Equation 5. The black curve is the same as in
Figure 3, the red curve is after the trigger requirement and inner detector requirements have been
applied.

3.4 Particle Trajectories

In an effort to completely understand the kinematics behind the leptons jets, the particle tra-
jectories were also plotted. It is important to note that the trajectories created are the truth
trajectories and not the reconstructed tracks. Also, the trajectories are plotted under the simpli-
fying assumptions that the solenoidal, toroidal, and end-cap toroidal magnetic fields are uniform
and that there are no material effects or multiple scattering.

To create the trajectories, the variables needed from each lepton were the charge and the
four-momentum. It was also necessary to specify the magnetic field. Then the position &xi and
momentum &pi were propagated according to their current values and the specified magnetic field.
The momentum &pi was rotated according to the particle’s radius of curvature which can be
determined as9

pT = 0.3zBr ⇒ r =
pT

0.3zB
, (6)

where pT is the transverse momentum in units of GeV, z is the charge magnitude in units of e,
B is the magnetic field in units of Tesla, and r is the radius of curvature in units of metres.

The plotted trajectories allowed a visual inspection of events to verify their plausibility and
to gain an intuitive understanding of particle dynamics in the ATLAS magnetic field. Figures 5
and 6 show the electron trajectories in the detector. The electron trajectories were used in the

8These values are from a trigger menu presented in the ATLAS CSC book for a luminosity of 1031 cm−2s−1 [4].
While this is not the nominal luminosity, it will likely be similar to the luminosity at start-up. In any case, the
values are sufficient to provide an understanding of the trigger effect.

9Equation 6 can easily be derived from the Lorentz force law #F = q(#v× #B) and Newton’s law applied to circular
acceleration #F = m#ac.
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analysis to check against other methods. The muon trajectories, as seen in Figures 7 and 8, were
created primarily for visual interest.

3.5 Momenta Smearing

In simulations it is possible to maintain the true trajectories and momenta of the various detected
particles, however during the actual experiment this is not possible. The granularity of each de-
tector element is finite and thus can only identify a particular value within a finite range with a
specified uncertainty. There are also interactions between the particle and the detector material,
such as multiple scattering, which can alter the trajectory. To fully emulate the detector’s re-
sponse to an event, it is necessary to simulate each possible interaction between the particles and
the detector. However, simulating this is very complex and takes a long time, so quicker approx-
imations can be used if they produce a sufficiently close result. To make this type of simulation,
the momenta of the particles can be smeared in a given coordinate system according to Gaussian
distributions. Using this technique, the standard deviation of a variable x is given by Equation
7[4], which depends on the particle’s transverse momentum:

σx(pT ) = σx(∞)
(

1⊕ px

pT

)
(7)

where ⊕ stands for addition in quadrature. Also, the values of σx(∞) and px depend on η and
are given by Tables 2 and 3. At high pT the second term of Equation 7 becomes negligible and it
reduces to:

σx(pT ) = σx(∞). (8)

Therefore σx(∞) is from the uncertainty in determining the curvatuve of a particle which is
the primary source of uncertainty at high pT . At low pT , the first term of Equation 7 becomes
negligible and the equation reduces to:

σx(pT ) = σx(∞)
px

pT
. (9)

Then Equation 9 is the spread from multiple scattering which is the primary source of uncer-
tainty at low pT .

Track Parameter σx(∞) px (GeV)
Inverse Transverse Momentum (q/pT ) 0.34 TeV−1 44

Azimuthal Angle (φ) 70 µrad 39
Polar Angle (cot θ) 0.7× 10−3 5.0

Table 2: From the ATLAS CSC Studies book for 0.25 < |η| < 0.50 [4].

The values from Tables 3.5 and 3.5 were linearly interpolated to provide values for all η. The
variables in the table were also put into differential form to find the standard deviation in term
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Figure 5: Electron and positron trajectories in the xy-plane. The violet circle is the outer radius
of the inner detector at r = 1.15 m.

Figure 6: Electron and positron trajectories in the xz-plane and yz-plane. The violet rectangle is
the outer radius of the inner detector at r = 1.15 m. The blue rectangles are the central solenoid
at radii rin = 1.22 m and rout = 1.365 m.
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Figure 7: Muon trajectories in the xy-plane. The large violet circle is the outside of the barrel
toroids at r = 10.05 m and the small violet circle is the outer radius of the inner detector at
r = 1.15 m.

Figure 8: Muon trajectories in the xz-plane and yz-plane. The small violet rectangle is the outer
radius of the inner detector at r = 1.15 m. The small blue rectangles are the central solenoid at
radii rin = 1.22 m and rout = 1.365 m. The large violet rectangles on the top and bottom are the
barrel toroids at r = 10.05 m. The large violet rectangles on the left and right are the end-cap
toroids at radii rin = 0.825 m and rout = 5.35 m.
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Track Parameter σx(∞) px (GeV)
Inverse Transverse Momentum (q/pT ) 0.41 TeV−1 80

Azimuthal Angle (φ) 92 µrad 49
Polar Angle (cot θ) 1.2× 10−3 10

Table 3: From the ATLAS CSC Studies book for 1.50 < |η| < 1.75 [4].

of pT , φ, and θ resulting in the following equations:10

σ(pT ) = p2
T σ

( 1
pT

)
, (10)

σ(θ) = sin2 θσ(cot θ), (11)
σ(φ) = σ(φ). (12)

The momentum of the particle is stored in cartesian coordinates 〈px, py, pz〉, which were con-
verted into 〈pT , φ, θ〉, smeared using the standard deviations according to Equations 12 to yield
〈p′T , φ′, θ′〉, then converted back into cartesian coordinates

〈
p′x, p′y, p

′
z

〉
. These values were then

used to determine the energy assuming that the particle type (and thus the mass) is known.

E′ =
√

m2 + p′2x + p′2y + p′2z (13)

Now the resulting particle four-vectors are appropriately distributed as would be seen in the
actual detector. It is also important to mention that the γ′ mass distribution prior to smearing
was a delta function as was the w′ mass distribution.

4 Analysis

While writing the entire Monte Carlo was a useful exercise, it was the analysis of the resulting
distributions that provided insight into new physics.

4.1 Opening Angle

One of the primary aspects of the dark matter theory is that the decay of the dark matter gauge
bosons will result in lepton jets. To determine if the resulting leptons can justifiably be labelled
a jet, it is necessary to examine the opening angle of the leptons.

4.1.1 Two Lepton Decays

In the two lepton case, when the leptons are produced in the γ′ rest frame they are always back
to back to conserve momentum. Therefore the opening angle in the rest frame of the γ′ is always
π.11 However, if the γ′s are boosted in the lab frame, the opening angle tends to get smaller
because the longitudinal component of the lepton momenta become larger while the tranverse

10The following condenses the notation from σx(pT ) to σ(x) and it is assumed that all are functions of pT .
11All opening angles mentioned will be measured in radians.
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component remains unchanged. The distribution is shown in Figure 9(a). Figure 9(b) shows the
cosine of the same opening angle distribution. It is very interesting to note that the application of
the trigger requirement selects only leptons with a very small opening angle, effectively selecting
lepton jets. This is because the γ′ has a small mass, therefore in order to pass the pT trigger
requirement, it will need to have a larger momentum, resulting in a larger boost between the γ′

rest frame and the lab frame. The requirements of the detector itself reinforce the prediction of
seeing lepton jets in dark gauge boson decays.

(a) The opening angle between the leptons in a two lep-
ton decay.

(b) The cosine of the opening angle between the leptons
in a two lepton decay.

Figure 9: Opening angle distributions of electrons. The black curve is the distribution prior
to applying the trigger requirement and the red curve are only the events that pass the trigger
requirement.

Figure 10(a) shows the opening angle plotted versus the momentum magnitude of the γ′

(after the trigger requirement). Although the plot follows the trend that smaller opening angles
correspond to high pT there are still events that pass the trigger requirement that have a large
opening angle and small pT . It was deduced that these events correspond to situations where the
decay is approximately along the direction of flight of the γ′. For these types of events there are
two situations that can occur. The first is if βγ′ < βl, where βγ′ is the γ′ velocity in the lab frame,
and βl is the lepton velocity in the γ′ rest frame. In this case, the opening angle remains large
after the boost. The second situation that can occur is if βγ′ > βl. In this case, the boost flips
the direction of one of the leptons so that both leptons are pointing in approximately the same
direction in the lab frame, and the opening angle is small. The minimum γ′ momentum required
to flip the lepton is given by,

pγ′ =
mγ′

2ml

√
m2

γ′ − 4m2
l (14)

Inserting the mass values yields pγ′ = 2205.9 GeV for electrons while pγ′ = 10.5 GeV for muons.
This agrees with Figure 10(a), as there are events in the first situation since all γ′ generated have
pγ′ ≤ 2205.9 GeV. In the case of muons, any γ′ particles with pγ′ ≤ 10.5 GeV will not make it past
the trigger requirement. Figure 10(b) shows exactly this result, confirming the interpretation.
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(a) Electrons. (b) Muons.

Figure 10: Opening angle versus the momentum magnitude of the γ′.

4.1.2 Four Lepton Decays

For each pair of leptons produced from w′ decays the kinematics determined in the previous
section still apply since the w′ is also very light and thus will also be highly boosted. Another
question that arises in the analysis of four lepton events that does not come up in the two lepton
discussion is whether the four leptons form a single jet of four leptons or form two jets of two
leptons. To examine this the opening angle between the two w′s was compared to the opening
angle between leptons from the same w′. Figure 11 shows the results that θw′ tends to be smaller
than θ2l and in fact comparing event by event it turns out that θw′ is always smaller. Because
of this, the lepton pairs do not have a sufficient separation to become two separate jets so the
four-lepton case results in a single lepton jet12.

4.2 Lepton Separation

In order for these kinematics to be useful, it is necessary that the leptons in a given jet are
distinguishable to the ATLAS detector. If this is the case, then lepton jets may make a distinct
signal for which to search. Baumgart et al. suggest in their paper that leptons within a given jet
are distinguishable based on difference in pT , however it is difficult to say if the ∆pT in a given
jet is sufficiently large to make this distinction. In this study, the lepton separation in the inner
detector was examined to see if the lepton separation was greater than the detector resolution
and to understand the effect of the magnetic field on the separation.

There are two useful types of lepton separations on the detector. The first is the separation in
the xy-plane, essentially disregarding the z-component. This is very useful as it emphasizes the
effect of the magnetic field13 and gives an accurate physical separation in metres as if the inner
detector barrel was rolled out flat. The second is the three-dimensional separation. This is useful
since it can be used to find the ∆η×∆φ value to compare to the actual detector values. In terms

12This is dependent upon the masses choosen for w′. For instance, if mw′ was choosen to be several times smaller
then the w′s would be produced at a higher momentum and so the component of the lepton boost in the direction
of the w′ flight would be greater, increasing θw′ .

13The magnetic field in the solenoid was approximated to be #B = Bz ẑ where Bz = 2T. According to the Lorentz
force law, the direction of the magnetic force is only in the xy-plane.
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Figure 11: The black curve is θw′ , the opening angle between the w′s. The mean of the distribution
is 0.0375 rad. The red curve is θ2l, the opening angle between a pair of leptons. The mean of the
distribution is 0.0930 rad.

of a physical separation in metres, however, this separation is only an approximation since the
inner detector is a cylinder, so the arc length found from the three-dimension separation suffers
from the cylinder’s non-sphericity.

Figure 12: The xy-separation of the leptons at the outer radius of the inner detector, r = 1.15 m.
The black curve is with the magnetic field and has a mean of 14.0 cm. The red curve is without
the magnetic field and has a mean of 14.3 cm.

Figure 12 shows the two lepton xy-separation with and without the magnetic field. Interest-
ingly the magnetic field introduces only a very small effect on the separation. The hypothesized
cause for this was the fact that the magnetic field can cause leptons to diverge (curl further away
from each other) or converge (curl closer together). Upon analysis it was found that these two
possibilities occur with approximately equal frequency. Figure 13 separates the two cases and
finds that each case alone produces a significant separation. It is the combination of both of these
cases in equal quantity that produces a small net effect from the magnetic field, confirming the
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hypothesis. It is also important to note that this effective cancellation is sensitive to the magnetic
field strength and the opening angle distribution.

(a) Leptons that curl away from each other in the mag-
netic field. With the magnetic field the mean is 20.2 cm.
Without the magnetic field the mean is 14.1 cm.

(b) Leptons that curl towards each other in the mag-
netic field. With the magnetic field the mean is 8.6 cm.
Without the magnetic field the mean is 13.7cm.

Figure 13: Lepton separations for leptons that curl away and towards each other separately. The
black curve is with the magnetic field and the red curve is without the magnetic field.

In the four lepton case, there four leptons thus by combinatorics there are six possible sep-
arations to consider. In Figure 14 the maximum and minimum separations are considered. In
the case of the minimum separation, the effect of the magnetic field is small but still noticeable,
and for the maximum separation the magnetic field increases the separation very noticeably. The
increased effect on the four lepton case is likely due to the fact that there are four leptons sharing
the same energy as in the two lepton case. Thus on average the leptons will have less pT and
will curl more due to the magnetic field. Also, while considering the minimum and maximum
distances, the effects of convergent and divergent curls are much less pronounced.

(a) The minimum separation between a pair of leptons.
With the magnetic field the mean is 5.99 cm. Without
the magnetic field the mean is 3.01cm.

(b) The maximum separation between a pair of leptons.
With the magnetic field the mean is 47.14 cm. Without
the magnetic field the mean is 11.75cm.

Figure 14: Four lepton separations in the inner detector at r = 1.15 m. The black curve is with
the magnetic field and the red curve is without the magnetic field.
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Source ∆η ×∆φ
Lepton Separation 0.110× 0.130

Sampling 1 0.003× 0.100
Sampling 2 0.025× 0.025
Sampling 3 0.050× 0.025

Table 4: The ∆η ×∆φ resolution compared against the electromagnetic calorimeter barrel sam-
pling as stated in the ATLAS TDR [5].

Using the three-dimensional separation the values shown in Table 4 were found. The lepton
separation numbers are taken from the means of the ∆η and ∆φ distributions. According to the
current numbers used by ATLAS, it is likely that the leptons in a given jet can be distinguished
based on which detector element they hit.

4.3 Mass Reconstruction

Using the smeared momenta from Section 3.5 it is possible to reconstruct the invariant mass of
the γ′ particles. This is equivalent to the type of analysis that would be conducted with the actual
data to determine the mass of the γ′. This is done by adding the lepton four-vectors and finding
the invariant mass of the sum.14 Figure 15(a) shows the reconstruction for the two lepton case,
and Figure 15(b) shows the reconstruction for the four lepton case. In each plot the distribution
is a Gaussian centered at approximately 1.5 GeV, as expected.

(a) Mass reconstruction of γ′ for the two lepton decay.
The mean of the distribution is 1.49962 GeV and the
RMS is 0.0356731 GeV.

(b) Mass reconstruction of γ′ for the four lepton decay.
The mean of the distribution is 1.49996 GeV and the
RMS is 0.0322522 GeV.

Figure 15: Mass reconstructions of the γ′.

In the four lepton decay there is also an additional complication if one wishes to reconstruct
the mass of the w′. There are two pairs of leptons, each with a negatively charged lepton, and
a positively charged lepton. When reconstructing the w′ mass, it may be difficult to tell which

14In particular, if the lepton four-vectors are pµ
1 and pµ

2 then let pµ = pµ
1 + pµ

2 . The invariant mass is simply
(pµ)2 = p2

0 − #p2 = E2 − #p2 = m2.
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leptons came from the same w′ as opposed to mismatching the leptons to different w′s. This is
a problem since while for each case the distribution is centered at mw′ = 0.6 GeV (the correct
mass), in reconstruction it will not be known which case belongs in which histogram and linear
combinations of the two cases may not yield the correct mean. In lieu of this it has been suggested
to use the same charge lepton pairs to distinguish the mismatched pair separation [8]. It turns
out that the distribution of same charge pairs has the same shape as mismatched pairs and can be
“subtracted” from all of the different charge pairs to accurately reconstruct the w′ mass. Figure
16 shows these distributions. From the figure it is clear that subtracting these plots would provide
a reliable reconstruction of the w′ mass.

Figure 16: The black curve is all of different charge lepton pairs and the red curve is all of the
same charge lepton pairs.

5 Conclusion and Outlook

It was a very useful exercise to write an entire Monte Carlo framework and aided greatly in
the understanding of lepton jets. In particular, writing the Monte Carlo allowed for a complete
mastery of parameters and assumptions involved in generating the simulated events. Furthermore,
although a specific model was used in generating the Monte Carlo, many of the results presented
here hold for any model in which a light particle decays to leptons.

It was found that in the two lepton decays of the dark gauge boson, the leptons are highly
collimated and so it is justified to call them lepton jets. The requirement dictated by the trigger,
even at low luminosities, reinforces the jet structure and only selects leptons with small opening
angles. These kinematics apply equally to the four lepton decay. It was also found that for the
particular mass values chosen the four leptons create a single lepton jet.

In order to understand the detection potential for the leptons it was necessary to study their
separation in the detector and the effect of the solenoidal magnetic field. It was found that in
the two lepton case, the magnetic field causes as many leptons to curl together as to curl apart
and these effects cancel each other out. The ATLAS detector resolution was also determined to
be sufficiently large to separate leptons within a jet based on where they hit the detector.

Lastly, applying the appropriate momenta smearings, it was possible to reconstruct the mass
of the γ′ as would be seen in the detector. The result was a Gaussian with a mean of 1.5 GeV,
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exactly the value input into the Monte Carlo. Reconstructing the mass of the w′ was also possible,
but required the extra “trick” of subtracting the same charge lepton pairs from the opposite charge
lepton pairs. The result was a Gaussian as well, with a mean of 0.6 GeV, the value input into the
Monte Carlo.

Future work could include feeding the generated four-momenta into a full detector simulation
to see the detector response, or extending the simulation itself to more closely represent the
detector. It would also be interesting to use a map of the magnetic field to see the exact trajectories
that would be taken by the particles since the capabilities are already present in the code. One
particular application that has actually already been discussed would be to use the simulation to
probe the parameter space15 and quickly gain an idea of the new kinematics. At present the Monte
Carlo can produce on the order of 50, 000 events in a few seconds and so it has a much shorter
turn around time than a full detector simulation without greatly compromising the accuracy of
the data.
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