
1 Introduction

General Relativity has been one of the pilars of modern physics for over 100 years now. Testing the theory
and its consequences is therefore very important to solidifying our understand and exploring new areas of
physics. However, there are other theories of gravitation which one can study and compare to GR. One such
set of theories is the class of scalar-tensor theories of gravity. These theories agree with GR in weak field
limits, but can deviate from GR in stronger fields. Such a case where we would see a measurable difference
between GR and such scalar-tensor theories are in binary pulsars. We’ll study the post-Keplerian timing
parameters describing a binary pulsar system in both GR and various scalar-tensor theories of gravity in
order to put restrictions on which of these theories agree with experimental data.

2 Post-Keplerian Timing Parameters for General Relativity

Before writing down the Post-Keplerian (PK) parameters for general relativity we first list all relevant vari-
ables and what they represent.

ω Longitude of periastron
ω̇ Advance of periastron
Pb Orbital period
Ṗb Orbital period derivative
γ Gravitational redshift
e Eccentricity
r Range of Shapiro delay
s Shape of Shapiro delay
i Angle of Inclination
x Projected semi-major axis
mA Pulsar mass (measured in units of M�)
mB Companion mass (measured in units of M�)
M Total mass (M = m1 +m2)

In general relativity, the equations describing the PK parameters according to [1][2] are

ω̇ = 3
(
Pb
2π

)−5/3

G2/3M2/3(1− e2)−1, (1)

γ = e

(
Pb
2π

)1/3

G2/3M−1/3mB

(
1 +

m2

M

)
, (2)

Ṗb = −192π
5

(
Pb
2π

)−5/3

mAmBG
5/3M−1/3

(
1 +

73
24
e2 +

37
96
e4
)

(1− e2)−7/2, (3)

s = x

(
Pb
2π

)−2/3

G−1/3M2/3m−1
B , (4)

r = GmB . (5)

where s = sin i, G is Newton’s constant and the convention that M�
c3 = 1 is employed.

3 Tensor-scalar theories [3]

Let us consider a general tensor-scalar action involving the metric g̃µν (with signature ’mostly plus’), a scalar
field Φ, and some matter variables ψm (including gauge bosons):
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S = (16πG)−1

∫
d4x(−g̃)1/2[F (Φ)R̃− Z(Φ)g̃µν∂µΦ∂νΦ− U(Φ)] + Sm[ψm; g̃µν ]. (6)

For simplicity, we assume here that the weak equivalence principle is satisfied, i.e., that the matter
variables ψm are all coupled to the same ’physical metric’ g̃µν . The general model (6) involves three arbitrary
functions: a function F (Φ) coupling the scalar Φ to the Ricci scalar of g̃µν , R̃ ≡ R(g̃µν), a function Z(Φ)
renormalizing the kinetic term of Φ, and a potential U(Φ). As we have the freedom of arbitrary redefinitions
of the scalar field, Φ → Φ

′
= f(Φ), only two functions among F,Z and U are independent. It is ofetn

convenient to rewrite (6) in a canonical form, obtained by redefining both Φ and g̃µν according to

gµν = F (Φ)g̃µν , (7)

ϕ = ±
∫
dΦ

[
3
4
F
′2(Φ)
F 2(Φ)

+
1
2
Z(Φ)
F (Φ)

]1/2

. (8)

This yields

S = (16πG)−1

∫
d4x(−g)1/2[R− 2gµν∂µϕ∂νϕ− V (ϕ)] + Sm[ψm;A2(ϕ)gµν ]. (9)

where

R ≡ R(gµν), (10)
V (ϕ) = F−2(Φ)U(Φ), (11)
A(ϕ) = F−1/2(Φ) (12)

with Φ(ϕ) obtained by inverting the integral (8).

The two arbitrary functions entering the canonical form (9) are: (i) the conformal coupling function A(ϕ)
and (ii) the potential function V (ϕ). Note that the ’physical metric g̃µν (the one measured by laboratory
clocks and rods) is conformally related to the ’Einstein metric’ gµν , being given by g̃µν = A2(ϕ)gµν .
In many technical developments it is useful to work with the logarithmic coupling function a(ϕ) such that:

a(ϕ) ≡ lnA(ϕ). (13)

In the case of the general model (6) this logarithmic coupling is given by

a(ϕ) = −1
2

lnF (Φ) (14)

where Φ(ϕ) must be obtained from (8).

4 Post-Keplerian Timing Parameters for Brans-Dicke Theory [1][3]

Let’s now consider the case of the Jordan-Fierz-Brans-Dicke action, which is of the general type (6) with

F (Φ) = Φ (15)
Z(Φ) = ωBDΦ−1, (16)

where ωBD is an arbitrary constant. Using eqns. (9) and (12), one finds that -2α0ϕ = ln Φ and that the
logarithmic coupling function is simply

a(ϕ) = α0ϕ+ const., (17)
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where α2
0 = (2ωBD + 3)−1.

It’s useful to note that the larger the value of ωBD, the smaller the effects of the scalar field, and in the
limit ωBD →∞, the theory becomes indistinguishable from GR in all its predictions. The equations for the
PK parameters in Brans-Dicke theory are written in terms of the variables listed in section 1 as well as two
others, as we now define.

sX = −
(
∂(lnmX)
∂(lnG)

)
N

, (18)

κX = −
(
∂(ln IX)
∂(lnG)

)
N

. (19)

for X = {A,B} The quantities sX and κX measure the ”sensitivity” of the masses mX and moment of inertial
IX of each body to changes in the scalar field (reflected in changes in G) for a fixed baryon number N . The
quantity sA is related to the gravitation binding energy. The sensitivities will depend on the neutron-star
equation of state. We are now ready to write down the equations of the PK parameters in Brans-Dicke
theory, but before doing so, let’s make some definitions in terms of our variables to simplify the equations.

ξ = (2 + ωBD)−1 (20)
G = 1− ξ(sA + sB − 2sAsB) (21)

P = G
[
1− 2

3
ξ +

1
3
ξ(sA + sB − 2sAsB)

]
(22)

ρ = 1− ξsB (23)
η = (1− 2sB)ξ (24)
Γ = 1− 2(mAsB +mBsA)/M (25)

Γ
′

= 1− sA − sB (26)

k1 = G2

[
12
(

1− 1
2
ξ

)
+ ξΓ2

]
(27)

k2 = G2

[
11
(

1− 1
2
ξ

)
+

1
2
ξ

(
Γ2 − 5ΓΓ

′
− 15

2
Γ
′2

)]
(28)

F (e) =
1
12

(1− e2)7/2
[
k1

(
1 +

7
2
e2 +

1
2
e4
)
− k2

(
1
2
e2 +

1
8
e4
)]

(29)

G(e) = (1− e2)−5/2

(
1 +

1
2
e2
)

(30)

ζ = sA − sB (31)

With these definitions in place, we are now ready to write down the equations for the PK parameters in
Brans-Dicke theory[1].

ω̇ = 3
(
Pb
2π

)−5/3

G2/3M2/3(1− e2)−1PG−4/3 (32)

γ = e

(
Pb
2π

)1/3

mBG
2/3(MG)−1/3(ρ+ GmBM

−1 + κAη) (33)

Ṗb = −192π
5

(
Pb
2π

)−5/3

mAmBG
5/3M−1/3G−4/3F (e)− 4π

(
Pb
2π

)−1

mAmBM
−2ξζ2G(e) (34)

We should check that these equations reduce down to equations (1)-(3) in the limit that Brans-Dicke
theory becomes General Relativity. So as ωBD →∞, we see that
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ξ → 0, (35)
G → 1, (36)
P → 1, (37)
ρ → 1, (38)
η → 0, (39)
k1 → 12, (40)
k2 → 11, (41)

F (e) → (1− e2)−7/2

(
1 +

73
24
e2 +

37
96
e4
)
, (42)

(43)

and plugging these into equations (32)-(34) we see they do indeed reduce to equations (1)-(3).

5 Post-Keplerian Timing Parameters for Tensor-Scalar Theory of
Gravity with A(ϕ) = exp(α0ϕ+ 1

2β0ϕ
2)[3]

Before writing down the desired equations, we first make a couple notes and definitions

If one uses appropriate units in the asymptotic region far from the system, namely units such that the
asymptotic value a(ϕ0) of a(ϕ) vanishes, all observable quantities at the post-Newtonian (1PN) level depend
only on the values of the first two derivatives of a(ϕ) at ϕ = ϕ0. More precisely, we define

α(ϕ) ≡ ∂a(ϕ)
∂ϕ

;β(ϕ) ≡ ∂α(ϕ)
∂ϕ

=
∂2a(ϕ)
∂ϕ2

(44)

and denote α0 ≡ α(ϕ0), β0 ≡ β(ϕ0)

The field equations of a general tensor-scalar theory, as derived from the canonical action (9) (neglecting the
effect of V (ϕ)) read

Rµν = 2∂µϕ∂νϕ+ 8πG
(
Tµν −

1
2
Tgµν

)
(45)

�gϕ = −4πGα(ϕ)T (46)

where Tµν ≡ 2(−g)−1/2δSm/δgµν denotes the material stress-energy tensor in ’Einstein units’. All tensorial
operations in eqns. (45) and (46) are performed by using the Einstein metric gµν .

Explicitly writing the field equations (45) and (46) for a slowly rotating (stationary, axisymmetric) neutron
star, labeled A, leads to a coupled set of ordinary differential equations constraining the radial dependence of
gµν and ϕ. Imposing the boundary conditions gµν → ηµν , ϕ→ ϕa at large radial distances, finally determines
the crucial ’form factors’ (in Einstein units) describing the effective coupling between the neutron star A
and the fields to which it is sensitive: total mass mA(ϕa), total scalar charge ωA(ϕa), and moment of inertia
IA(ϕ). This ϕa is a combination of the cosmological background value ϕ0 and of the scalar influence of the
companion of the considered neutron star. As indicated, these quantities are functions of the asymptotic
value ϕa of ϕ felt by the considered neutron star. They satisfy the relation ωA = −∂mA(ϕa)/∂ϕa. From
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them, one defines other quantities that play an important role in binary pulsar physics, notably

αA(ϕa) ≡ − ωA
mA
≡ ∂ lnmA

∂ϕa
(47)

βA(ϕa) ≡ ∂αA
∂αa

(48)

κA(ϕa) ≡ −∂ ln IA
∂ϕa

(49)

The quantity αA plays a crucial role. It measures the effective coupling strength between the neutron
star and the ambient scalar field. If we formally let the self-gravity of the neutron A tend toward zero
(i.e., if we consider a weakly self-gravitating object), the function αA(ϕa) becomes replaced by α(ϕa) where
α(ϕ) ≡ ∂a(ϕ)/∂ϕ is the coupling strength. Roughly speaking, we can think of αA(ϕa) as a (suitable defined)
average value of the local coupling strength α(ϕ(r)) over the radial profile of the neutron star A.

For our purposes we will indeed make the assumption that αA(ϕa) = αB(ϕa) = α(ϕa) = α0. This
is equivalent to the statement that ∂ ln m̃A(ϕa)/∂ϕa = 0, where m̃A is the mass in the Jordan frame,
since mA(ϕa) = A(ϕa)m̃A(ϕa), and similarly for mB . Following the same line of reasoning, we’ll take
βA(ϕa) = βB(ϕa) = β(ϕa) = β0

Noting one more time that the label A refers to the object which is being timed (the pulsar), the label
B refers to its companion and x (see table in section 1) denotes the projected semi-major axis of the orbit
of A, we are now ready to write down the equations of the PK parameters.

ω̇ =
3

1− e2

(
Pb
2π

)−5/3

(GM)2/3
(

6 + (4− β0)α2
0 − 2α4

0

6(1 + α2
0)4/3

)
(50)

γ = e

(
Pb
2π

)1/3

G2/3M−1/3mB(1 + α2
0)−1/3

(
1 +

mB

M
(1 + α2

0) + κAα0

)
(51)

Ṗb = − πmAmBα
2
0G

5/3

3M1/3(1 + α2
0)4/3

(
Pb
2π

)−5/3
e2(1 + e2/4)(8(1 + α2

0)− 6β0)2

(1− e2)7/2

− 32πmAmBG
5/3

5M1/3

(
Pb
2π

)−5/3 (1 + 73e2/24 + 37e4/96)(1 + α2
0)2/3

(1− e2)7/2
(6 + α2

0) (52)

s = x

(
Pb
2π

)−2/3

(G(1 + α2
0))−1/3M−4/3m−1

B (53)

r = G(1 + α2
0)mB (54)
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